login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175505
Numerator of A053818(n)/A023896(n) = antiharmonic mean of numbers k such that gcd(k,n) = 1, 1 <= k < n.
19
1, 1, 5, 5, 3, 13, 13, 21, 53, 7, 7, 49, 25, 29, 31, 85, 11, 109, 37, 27, 43, 15, 15, 193, 83, 53, 485, 113, 19, 59, 61, 341, 67, 23, 71, 433, 73, 77, 79, 107, 27, 83, 85, 59, 271, 31, 31, 769, 685, 167, 103, 209, 35, 973, 37, 449, 115, 39, 39, 239, 121, 125, 379, 1365
OFFSET
1,3
COMMENTS
See A175506 - denominators of the antiharmonic means B of numbers k such that gcd(k, n) = 1 for numbers n >= 1 and k < n where B = A053818(n) / A023896(n) = a(n) / A175506(n).
FORMULA
a(n) = A053818(n) * A175506(n) / A023896(n).
Sum_{k=1..n} a(k)/175506(k) ~ n^2/3. - Amiram Eldar, Dec 07 2023
MAPLE
antiHMean := proc(L)
add(i^2, i=L)/add(i, i=L) ;
end proc:
A175505 := proc(n)
local kset, k ;
kset := [1] ;
for k from 2 to n do
if igcd(k, n) = 1 then
kset := [op(kset), k] ;
end if;
end do:
antiHMean(kset) ;
numer(%) ;
end proc: # R. J. Mathar, Sep 26 2013
MATHEMATICA
f[n_] := 2Plus @@ (Select[ Range@n, GCD[ #, n] == 1 &]^2)/(n*EulerPhi@n); f[1] = 1; Numerator@Array[f, 65] (* Robert G. Wilson v, Jul 01 2010 *)
PROG
(PARI) A175505(n)=numerator((2*n+(-1)^omega(n)*A007947(n)/n)/3) \\ M. F. Hasler, Nov 29 2010
(PARI) a(n) = {my(f = factor(n)); numerator(if(n == 1, 1, 2*n/3 + (1/3) * prod(i = 1, #f~, 1 - f[i, 1])/eulerphi(f))); } \\ Amiram Eldar, Dec 07 2023
CROSSREFS
Cf. A023896, A053818, A175506 (denominators).
Sequence in context: A232609 A225666 A365078 * A158274 A202695 A110986
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, May 31 2010, Jun 01 2010
EXTENSIONS
More terms from Robert G. Wilson v, Jul 01 2010
STATUS
approved