login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Period 6: repeat [1, 1, 1, -1, -1, -1].
15

%I #41 Dec 14 2023 05:26:58

%S 1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,-1,

%T -1,-1,1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,

%U 1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,-1,-1,-1

%N Period 6: repeat [1, 1, 1, -1, -1, -1].

%H Michael Somos, <a href="http://grail.eecs.csuohio.edu/~somos/rfmc.txt">Rational Function Multiplicative Coefficients</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,-1).

%F a(n+6) = a(n), a(0)=a(1)=a(2)=-a(3)=-a(4)=-a(5)=1.

%F a(n) = ((-1)^n * (4 * (cos((2*n + 1)*Pi/3) + cos(n*Pi)) + 1) - 4) / 3. - Federico Acha Neckar (f0383864(AT)hotmail.com), Sep 01 2007

%F a(n) = (-1)^n * (4 * cos((2*n + 1) * Pi/3) + 1) / 3. - Federico Acha Neckar (f0383864(AT)hotmail.com), Sep 02 2007

%F G.f.: (1+x+x^2)/((1+x)*(x^2-x+1)). - _R. J. Mathar_, Nov 14 2007

%F a(n) = 3*a(n-1) - a(n-3) + 3*a(n-4) for n>3. - _Paul Curtz_, Nov 22 2007

%F a(n) = (-1)^floor(n/3). Compare with A057077, A143621 and A143622. Define E(k) = Sum_{n >= 0} a(n)*n^k/n! for k = 0,1,2,... . Then E(k) is an integral linear combination of E(0), E(1) and E(2) (a Dobinski-type relation). Precisely, E(k) = A143628(k)*E(0) + A143629(k)*E(1) + A143630(k)*E(2). - _Peter Bala_, Aug 28 2008

%F Euler transform of length 6 sequence [1, 0, -2, 0, 0, 1]. - _Michael Somos_, Feb 26 2011

%F a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(3^e) = -(-1)^e if e>0, b(p^e) = 1 if p == 1 (mod 4), b(p^e) = (-1)^e if p == 3 (mod 4) and p>3. - _Michael Somos_, Feb 26 2011

%F a(n + 3) = a(-1 - n) = -a(n) for all n in Z. - _Michael Somos_, Feb 26 2011

%F a(n) = (-1)^n * A257075(n) for all n in Z. - _Michael Somos_, Apr 15 2015

%F G.f.: 1 / (1 - x / (1 + 2*x^2 / (1 + x / (1 + x / (1 - x))))). - _Michael Somos_, Apr 15 2015

%F From _Wesley Ivan Hurt_, Jul 05 2016: (Start)

%F a(n) + a(n-3) = 0 for n>2.

%F a(n) = (cos(n*Pi) + 2*cos(n*Pi/3) + 2*sqrt(3)*sin(n*Pi/3)) / 3. (End)

%F a(n)*a(n-4) = a(n-1)*a(n-3) for all n in Z. - _Michael Somos_, Feb 25 2020

%e G.f. = 1 + x + x^2 - x^3 - x^4 - x^5 + x^6 + x^7 + x^8 - x^9 - x^10 - x^11 + ...

%e G.f. = q + q^3 + q^5 - q^7 - q^9 - q^11 + q^13 + q^15 + q^17 - q^19 - q^21 + ...

%p seq(op([1, 1, 1, -1, -1, -1]), n=0..30); # _Wesley Ivan Hurt_, Jul 05 2016

%t a[ n_] := (-1)^Quotient[n, 3]; (* _Michael Somos_, Apr 24 2014 *)

%t PadRight[{}, 100, {1, 1, 1, -1, -1, -1}] (* _Wesley Ivan Hurt_, Jul 05 2016 *)

%o (PARI) {a(n) = (-1) ^ (n\3)}; /* _Michael Somos_, Feb 26 2011 */

%o (Magma) &cat [[1, 1, 1, -1, -1, -1]^^20]; // _Wesley Ivan Hurt_, Jul 05 2016

%Y Cf. A131561, A131531, A257075.

%Y Cf. A057077, A143621, A143622, A143628, A143629, A143630. - _Peter Bala_, Aug 28 2008

%K sign,easy

%O 0,1

%A _Paul Curtz_, Aug 03 2007