login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130152 Triangle read by rows: T(n,k) = number of permutations p of [n] such that max(|p(i)-i|)=k (n>=1, 0<=k<=n-1). 15
1, 1, 1, 1, 2, 3, 1, 4, 9, 10, 1, 7, 23, 47, 42, 1, 12, 60, 157, 274, 216, 1, 20, 151, 503, 1227, 1818, 1320, 1, 33, 366, 1669, 4833, 10402, 13656, 9360, 1, 54, 877, 5472, 18827, 50879, 96090, 115080, 75600, 1, 88, 2088, 17531, 75693, 234061, 569602, 966456, 1077840, 685440, 1, 143, 4937, 55135, 304900, 1076807, 3111243, 6791994, 10553640, 11123280, 6894720 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Row sums are the factorials. T(n,n) = (n-2)!*(2n-3) = A007680(n-2) (for n>=2). T(n,1) = Fibonacci(n+1)-1 = A000071(n+1). Sum_{k=0..n-1} k*T(n,k) = A130153(n). For the statistic max(p(i)-i) see A056151.
LINKS
Torleiv Kløve, Spheres of Permutations under the Infinity Norm - Permutations with limited displacement, Reports in Informatics, Department of Informatics, University of Bergen, Norway, no. 376, November 2008.
FORMULA
T(n,k) = A306209(n,k) - A306209(n,k-1) for k > 0, T(n,0) = 1. - Alois P. Heinz, Jan 29 2019
EXAMPLE
T(4,1) = 4 because we have 1243, 1324, 2134 and 2143.
Triangle starts:
1;
1, 1;
1, 2, 3;
1, 4, 9, 10;
1, 7, 23, 47, 42;
1, 12, 60, 157, 274, 216;
...
MAPLE
with(combinat): for n from 1 to 7 do P:=permute(n): for i from 0 to n-1 do ct[i]:=0 od: for j from 1 to n! do if max(seq(abs(P[j][i]-i), i=1..n))=0 then ct[0]:=ct[0]+1 elif max(seq(abs(P[j][i]-i), i=1..n))=1 then ct[1]:=ct[1]+1 elif max(seq(abs(P[j][i]-i), i=1..n))=2 then ct[2]:=ct[2]+1 elif max(seq(abs(P[j][i]-i), i=1..n))=3 then ct[3]:=ct[3]+1 elif max(seq(abs(P[j][i]-i), i=1..n))=4 then ct[4]:=ct[4]+1 elif max(seq(abs(P[j][i]-i), i=1..n))=5 then ct[5]:=ct[5]+1 elif max(seq(abs(P[j][i]-i), i=1..n))=6 then ct[6]:=ct[6]+1 else fi od: a[n]:=seq(ct[i], i=0..n-1): od: for n from 1 to 7 do a[n] od; # a cumbersome program to obtain, by straightforward counting, the first 7 rows of the triangle
n := 8: st := proc (p) max(seq(abs(p[j]-j), j = 1 .. nops(p))) end proc: with(combinat): P := permute(n): f := sort(add(t^st(P[i]), i = 1 .. factorial(n))); # program gives the row generating polynomial for the specified n - Emeric Deutsch, Aug 13 2009
# second Maple program:
b:= proc(s) option remember; (n-> `if`(n=0, 1, add((p-> add(
coeff(p, x, i)*x^max(i, abs(n-j)), i=0..degree(p)))(
b(s minus {j})), j=s)))(nops(s))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b({$1..n})):
seq(T(n), n=1..10); # Alois P. Heinz, Jan 21 2019
# third Maple program:
A:= proc(n, k) option remember; LinearAlgebra[Permanent](
Matrix(n, (i, j)-> `if`(abs(i-j)<=k, 1, 0)))
end:
T:= (n, k)-> A(n, k)-A(n, k-1):
seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Jan 22 2019
MATHEMATICA
(* from second Maple program: *)
b[s_List] := b[s] = Function[n, If[n == 0, 1, Sum[Function[p, Sum[ Coefficient[p, x, i]*x^Max[i, Abs[n - j]], {i, 0, Exponent[p, x]}]][b[s ~Complement~ {j}]], {j, s}]]][Length[s]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n-1}]][b[Range[n]] ];
Table[T[n], {n, 1, 11}] // Flatten
(* from third Maple program: *)
A[n_, k_] := A[n, k] = Permanent[Table[If[Abs[i-j] <= k, 1, 0], {i, 1, n}, {j, 1, n}]];
T[n_, k_] := A[n, k] - A[n, k - 1];
Table[Table[T[n, k], {k, 0, n - 1}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)
PROG
(C++) #include <iostream> #include <vector> #include <algorithm> using namespace std; inline int k(const vector<int> & s) { const int n = s.size() ; int kmax = 0 ; for(int i=0; i<n; i++) { const int thisdiff = abs(s[i]-i-1) ; if ( thisdiff > kmax) kmax = thisdiff ; } return kmax ; } int main(int argc, char *argv[]) { for(int n=1 ;; n++) { vector<int> s; for(int i=1; i<=n; i++) s.push_back(i) ; vector<unsigned long long> resul(n); do { resul[k(s)]++ ; } while( next_permutation(s.begin(), s.end()) ) ; for(int i=0; i<n; i++) cout << resul[i] << ", " ; cout << endl ; } return 0 ; } - R. J. Mathar, Oct 15 2007
CROSSREFS
Row sums give A000142.
T(n,floor(n/2)) gives A323807.
Sequence in context: A177896 A193920 A076732 * A211233 A084608 A078990
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, May 27 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 15 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 28 23:06 EDT 2024. Contains 374727 sequences. (Running on oeis4.)