login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (-1)^binomial(n,8): Periodic sequence 1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,... .
3

%I #18 Jun 15 2021 01:41:19

%S 1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,

%T -1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,

%U -1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1

%N a(n) = (-1)^binomial(n,8): Periodic sequence 1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,... .

%C Periodic sequence with period 16. More generally, it appears that (-1)^binomial(n,2^r) gives a periodic sequence of period 2^(r+1), the period consisting of a block of 2^r plus ones followed by a block of 2^r minus ones. See A033999 (r = 0), A057077 (r = 1) and A143621 (r = 2).

%C Nonsimple continued fraction expansion of (47+sqrt(445))/42 = 1.62131007404... - _R. J. Mathar_, Mar 08 2012

%F a(n) = (-1)^binomial(n,8) = (-1)^floor(n/8), since sum {k = 1..n-7} k*(k+1)*...*(k+6)/7! = binomial(n,8) == floor(n/8) (mod 2) for n = 0,1,...,15 by calculation and both sides increase by an even number if we substitute n+16 for n. a(n) = (1/8)*((n+8) mod 16 - n mod 16).

%F O.g.f.: (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)/(1+x^8) = (1+x)*(1+x^2)*(1+x^4)/(1+x^8) = (1-x^8)/((1-x)*(1+x^8)).

%F Define E(k) = Sum_{n>=0} a(n)*n^k/n! for k = 0,1,2,... . Then E(k) is a an integral linear combination of E(0),E(1),...,E(7) (a Dobinski-type relation).

%F a(n) = (-1)^A180969(3,n).

%p with(combinat):

%p a := n -> (-1)^binomial(n,8):

%p seq(a(n),n = 0..95);

%Y Cf. A033999, A057077, A130151, A143621.

%K easy,sign

%O 0,1

%A _Peter Bala_, Aug 30 2008