

A076481


Primes of the form (3^n1)/2.


15




OFFSET

1,1


COMMENTS

All primes p whose reciprocals belong to the middlethird Cantor set satisfy an equation of the form 2pK + 1 = 3^n. This sequence is the special case K = 1. See reference. [Christian Salas, Jul 04 2011]


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..9
Christian Salas, On prime reciprocals in the Cantor set, arXiv:0906.0465v5 [math.NT]
Christian Salas, Cantor primes as primevalued cyclotomic polynomials, arXiv preprint arXiv:1203.3969, 2012.


MATHEMATICA

Select[Table[(3^n1)/2, {n, 0, 500}], PrimeQ] (* Vincenzo Librandi, Dec 09 2011 *)


PROG

(MAGMA) [a: n in [1..200]  IsPrime(a) where a is (3^n1) div 2 ]; // Vincenzo Librandi, Dec 09 2011
(PARI) for(n=3, 99, if(ispseudoprime(t=3^n\2), print1(t", "))) \\ Charles R Greathouse IV, Jul 02 2013


CROSSREFS

The exponents n are in A028491. Cf. A075081.
Sequence in context: A095680 A128685 A201118 * A185834 A195890 A195520
Adjacent sequences: A076478 A076479 A076480 * A076482 A076483 A076484


KEYWORD

nonn


AUTHOR

Dean Hickerson (dean.hickerson(AT)yahoo.com), Oct 14 2002


STATUS

approved



