The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137350 A triangular Sequence of coefficients of a three deep polynomial recursion based on a Chebyshev kind and a Padovan recursion: Chebyshev; p(x,n)=x*p(x,n-1)-p(x,n-2); Padovan: a(n)=a(n-2)+a(n-3); Q(x, n) = x*Q(x, n - 2) - Q(x, n - 3). 0
 1, -1, 1, 0, 1, -1, -1, 1, 1, -1, 1, 0, -2, -1, 1, 1, 2, -2, 1, -1, 1, -3, -1, 1, 0, 3, 3, -3, 1, -1, -3, 3, -4, -1, 1, 1, -1, 6, 4, -4, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,13 COMMENTS Row sums are: {1, 0, 1, -1, 1, -2, 2, -3, 4, -5, 7} In differential equation terms this is equivalent to ( in Mathematica notation): D[y[x],{x,3}]=x*D[y[x],{x,1}]-y[x]; Two simple possible HypergeometricPFQ based results are: DSolve[{D[y[x], {x, 3}] == x*D[y[x], {x, 1}] - y[x], y[0] == 1}, y, x]; DSolve[{D[y[x], {x, 3}] == x*D[y[x], {x, 1}] - y[x], y[0] == 0}, y, x]. LINKS FORMULA Q(x, n) = x*Q(x, n - 2) - Q(x, n - 3). EXAMPLE {1}, {-1, 1}, {0, 1}, {-1, -1, 1}, {1, -1, 1}, {0, -2, -1, 1}, {1, 2, -2, 1}, {-1, 1, -3, -1, 1}, {0, 3, 3, -3, 1}, {-1, -3, 3, -4, -1, 1}, {1, -1, 6, 4, -4, 1} MATHEMATICA Clear[Q, x] Q[x, -2] = 1 - x; Q[x, -1] = 0; Q[x, 0] = 1; Q[x_, n_] := Q[x, n] = x*Q[x, n - 2] - Q[x, n - 3]; Table[ExpandAll[Q[x, n]], {n, 0, 10}]; a = Table[CoefficientList[Q[x, n], x], {n, 0, 10}]; Flatten[a] CROSSREFS Cf. A000931, A137276. Sequence in context: A058398 A091499 A284249 * A334607 A166240 A219347 Adjacent sequences:  A137347 A137348 A137349 * A137351 A137352 A137353 KEYWORD uned,tabl,sign AUTHOR Roger L. Bagula, Apr 08 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 14:25 EDT 2021. Contains 346374 sequences. (Running on oeis4.)