login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137350 A triangular Sequence of coefficients of a three deep polynomial recursion based on a Chebyshev kind and a Padovan recursion: Chebyshev; p(x,n)=x*p(x,n-1)-p(x,n-2); Padovan: a(n)=a(n-2)+a(n-3); Q(x, n) = x*Q(x, n - 2) - Q(x, n - 3). 0
1, -1, 1, 0, 1, -1, -1, 1, 1, -1, 1, 0, -2, -1, 1, 1, 2, -2, 1, -1, 1, -3, -1, 1, 0, 3, 3, -3, 1, -1, -3, 3, -4, -1, 1, 1, -1, 6, 4, -4, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,13

COMMENTS

Row sums are:

{1, 0, 1, -1, 1, -2, 2, -3, 4, -5, 7}

In differential equation terms this is equivalent to ( in Mathematica notation):

D[y[x],{x,3}]=x*D[y[x],{x,1}]-y[x];

Two simple possible HypergeometricPFQ based results are:

DSolve[{D[y[x], {x, 3}] == x*D[y[x], {x, 1}] - y[x], y[0] == 1}, y, x];

DSolve[{D[y[x], {x, 3}] == x*D[y[x], {x, 1}] - y[x], y[0] == 0}, y, x].

LINKS

Table of n, a(n) for n=1..41.

FORMULA

Q(x, n) = x*Q(x, n - 2) - Q(x, n - 3).

EXAMPLE

{1},

{-1, 1},

{0, 1},

{-1, -1, 1},

{1, -1, 1},

{0, -2, -1, 1},

{1, 2, -2, 1},

{-1, 1, -3, -1, 1},

{0, 3, 3, -3, 1},

{-1, -3, 3, -4, -1, 1},

{1, -1, 6, 4, -4, 1}

MATHEMATICA

Clear[Q, x] Q[x, -2] = 1 - x; Q[x, -1] = 0; Q[x, 0] = 1; Q[x_, n_] := Q[x, n] = x*Q[x, n - 2] - Q[x, n - 3]; Table[ExpandAll[Q[x, n]], {n, 0, 10}]; a = Table[CoefficientList[Q[x, n], x], {n, 0, 10}]; Flatten[a]

CROSSREFS

Cf. A000931, A137276.

Sequence in context: A058398 A091499 A284249 * A334607 A166240 A219347

Adjacent sequences:  A137347 A137348 A137349 * A137351 A137352 A137353

KEYWORD

uned,tabl,sign

AUTHOR

Roger L. Bagula, Apr 08 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 31 14:25 EDT 2021. Contains 346374 sequences. (Running on oeis4.)