login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327778 Number of integer partitions of n whose LCM is a multiple of n. 6
0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 11, 1, 11, 23, 1, 1, 23, 1, 85, 85, 45, 1, 152, 1, 84, 1, 451, 1, 1787, 1, 1, 735, 260, 1925, 1908, 1, 437, 1877, 4623, 1, 14630, 1, 6934, 10519, 1152, 1, 6791, 1, 1817, 10159, 22556, 1, 2819, 47927, 69333, 22010, 4310, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = 1 <=> n in { A000961 }. - Alois P. Heinz, Sep 26 2019

EXAMPLE

The partitions of n = 6, 10, 12, and 15 whose LCM is a multiple of n:

  (6)      (10)         (12)             (15)

  (3,2,1)  (5,3,2)      (5,4,3)          (6,5,4)

           (5,4,1)      (6,4,2)          (7,5,3)

           (5,2,2,1)    (8,3,1)          (9,5,1)

           (5,2,1,1,1)  (4,3,3,2)        (10,3,2)

                        (4,4,3,1)        (5,4,3,3)

                        (6,4,1,1)        (5,5,3,2)

                        (4,3,2,2,1)      (6,5,2,2)

                        (4,3,3,1,1)      (6,5,3,1)

                        (4,3,2,1,1,1)    (10,3,1,1)

                        (4,3,1,1,1,1,1)  (5,3,3,2,2)

                                         (5,3,3,3,1)

                                         (5,4,3,2,1)

                                         (5,5,3,1,1)

                                         (6,5,2,1,1)

                                         (5,3,2,2,2,1)

                                         (5,3,3,2,1,1)

                                         (5,4,3,1,1,1)

                                         (6,5,1,1,1,1)

                                         (5,3,2,2,1,1,1)

                                         (5,3,3,1,1,1,1)

                                         (5,3,2,1,1,1,1,1)

                                         (5,3,1,1,1,1,1,1,1)

MAPLE

a:= proc(m) option remember; local b; b:=

      proc(n, i, l) option remember; `if`(n=0 or i=1,

        `if`(l=m, 1, 0), `if`(i<2, 0, b(n, i-1, l))+

         b(n-i, min(n-i, i), igcd(m, ilcm(l, i))))

      end; `if`(isprime(m), 1, b(m$2, 1))

    end:

seq(a(n), n=0..60);  # Alois P. Heinz, Sep 26 2019

MATHEMATICA

Table[Length[Select[IntegerPartitions[n], Divisible[LCM@@#, n]&]], {n, 30}]

(* Second program: *)

a[m_] := a[m] = Module[{b}, b[n_, i_, l_] := b[n, i, l] = If[n == 0 || i == 1, If[l == m, 1, 0], If[i<2, 0, b[n, i - 1, l]] + b[n - i, Min[n - i, i], GCD[m, LCM[l, i]]]]; If[PrimeQ[m], 1, b[m, m, 1]]];

a /@ Range[0, 60] (* Jean-Fran├žois Alcover, May 18 2021, after Alois P. Heinz *)

CROSSREFS

The Heinz numbers of these partitions are given by A327783.

Partitions whose LCM is equal to their sum are A074761.

Partitions whose LCM is greater than their sum are A327779.

Partitions whose LCM is less than their sum are A327781.

Cf. A000961, A018818, A067538, A290103, A319333, A326842, A326843, A327780.

Sequence in context: A174453 A082063 A260148 * A099940 A157249 A343233

Adjacent sequences:  A327775 A327776 A327777 * A327779 A327780 A327781

KEYWORD

nonn

AUTHOR

Gus Wiseman, Sep 25 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 26 16:44 EDT 2021. Contains 346294 sequences. (Running on oeis4.)