The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327778 Number of integer partitions of n whose LCM is a multiple of n. 6
 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 11, 1, 11, 23, 1, 1, 23, 1, 85, 85, 45, 1, 152, 1, 84, 1, 451, 1, 1787, 1, 1, 735, 260, 1925, 1908, 1, 437, 1877, 4623, 1, 14630, 1, 6934, 10519, 1152, 1, 6791, 1, 1817, 10159, 22556, 1, 2819, 47927, 69333, 22010, 4310, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA a(n) = 1 <=> n in { A000961 }. - Alois P. Heinz, Sep 26 2019 EXAMPLE The partitions of n = 6, 10, 12, and 15 whose LCM is a multiple of n:   (6)      (10)         (12)             (15)   (3,2,1)  (5,3,2)      (5,4,3)          (6,5,4)            (5,4,1)      (6,4,2)          (7,5,3)            (5,2,2,1)    (8,3,1)          (9,5,1)            (5,2,1,1,1)  (4,3,3,2)        (10,3,2)                         (4,4,3,1)        (5,4,3,3)                         (6,4,1,1)        (5,5,3,2)                         (4,3,2,2,1)      (6,5,2,2)                         (4,3,3,1,1)      (6,5,3,1)                         (4,3,2,1,1,1)    (10,3,1,1)                         (4,3,1,1,1,1,1)  (5,3,3,2,2)                                          (5,3,3,3,1)                                          (5,4,3,2,1)                                          (5,5,3,1,1)                                          (6,5,2,1,1)                                          (5,3,2,2,2,1)                                          (5,3,3,2,1,1)                                          (5,4,3,1,1,1)                                          (6,5,1,1,1,1)                                          (5,3,2,2,1,1,1)                                          (5,3,3,1,1,1,1)                                          (5,3,2,1,1,1,1,1)                                          (5,3,1,1,1,1,1,1,1) MAPLE a:= proc(m) option remember; local b; b:=       proc(n, i, l) option remember; `if`(n=0 or i=1,         `if`(l=m, 1, 0), `if`(i<2, 0, b(n, i-1, l))+          b(n-i, min(n-i, i), igcd(m, ilcm(l, i))))       end; `if`(isprime(m), 1, b(m\$2, 1))     end: seq(a(n), n=0..60);  # Alois P. Heinz, Sep 26 2019 MATHEMATICA Table[Length[Select[IntegerPartitions[n], Divisible[LCM@@#, n]&]], {n, 30}] (* Second program: *) a[m_] := a[m] = Module[{b}, b[n_, i_, l_] := b[n, i, l] = If[n == 0 || i == 1, If[l == m, 1, 0], If[i<2, 0, b[n, i - 1, l]] + b[n - i, Min[n - i, i], GCD[m, LCM[l, i]]]]; If[PrimeQ[m], 1, b[m, m, 1]]]; a /@ Range[0, 60] (* Jean-François Alcover, May 18 2021, after Alois P. Heinz *) CROSSREFS The Heinz numbers of these partitions are given by A327783. Partitions whose LCM is equal to their sum are A074761. Partitions whose LCM is greater than their sum are A327779. Partitions whose LCM is less than their sum are A327781. Cf. A000961, A018818, A067538, A290103, A319333, A326842, A326843, A327780. Sequence in context: A174453 A082063 A260148 * A099940 A157249 A343233 Adjacent sequences:  A327775 A327776 A327777 * A327779 A327780 A327781 KEYWORD nonn AUTHOR Gus Wiseman, Sep 25 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 26 16:44 EDT 2021. Contains 346294 sequences. (Running on oeis4.)