login
A082063
Greatest common prime divisor of n and sigma_2(n) = A001157(n), or 1 if the two are relatively prime.
6
1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 3, 1, 2, 5, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 7, 1, 5, 1, 1, 1, 2, 5, 3, 1, 2, 1, 5, 1, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 2, 7, 1, 13, 2, 1, 2, 1, 5, 1, 1, 1, 2, 5, 2, 1, 2, 1, 2, 1, 2, 1, 7, 5, 2, 1, 2, 1, 5, 1, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 5
OFFSET
1,6
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A006530(A179930(n)). - Antti Karttunen, Nov 03 2017
MATHEMATICA
(* factors/exponent SET *) ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; f1[x_] := x; f2[x_] := DivisorSigma[2, x]; Table[Max[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}]
(* Second program: *)
Array[If[CoprimeQ[#1, #2], 1, Max@ Apply[Intersection, Map[FactorInteger[#][[All, 1]] &, {#1, #2}]]] & @@ {#, DivisorSigma[2, #]} &, 105] (* Michael De Vlieger, Nov 03 2017 *)
PROG
(PARI)
A006530(n) = if(1==n, n, vecmax(factor(n)[, 1]));
A082063(n) = A006530(gcd(sigma(n, 2), n)); \\ Antti Karttunen, Nov 03 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 07 2003
EXTENSIONS
Erroneous comment removed by Antti Karttunen, Nov 03 2017
STATUS
approved