login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174453 a(n) is the smallest k >= 1 for which gcd(m + (-1)^m, m + n - 4) > 1, where m = n + k - 1. 1
1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 12, 1, 2, 1, 1, 1, 18, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 30, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 42, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 60, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 72, 1, 2, 1, 1, 1, 9, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 102 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,2

COMMENTS

If a(n) > sqrt(n), then n-3 is the larger of twin primes. In these cases we have a(10)=5 and, for n > 10, a(n) = n-4. For odd n and for n == 2 (mod 6), a(n)=1; for n == 0 (mod 6), a(n)=2; for {n == 4 (mod 6)} & {n == 8 (mod 10)}, a(n)=4, etc. The problem is to develop this sieve for the excluding n for which a(n) <= sqrt(n) and to obtain nontrivial lower estimates for the counting function of the larger of twin primes.

LINKS

Paul Tek, Table of n, a(n) for n = 5..10000

V. Shevelev, Theorems on twin primes-dual case, arXiv:0912.4006 [math.GM], 2009-2014.

MAPLE

A174453 := proc(n) local k, m ; for k from 1 do m := n+k-1 ; if igcd(m+(-1)^m, m+n-4) > 1 then return k; end if; end do: end proc: seq(A174453(n), n=5..120); # R. J. Mathar, Nov 04 2010

MATHEMATICA

a[n_] := For[k=1, True, k++, m=n+k-1; If[GCD[m+(-1)^m, m+n-4]>1, Return[k]] ];

Table[a[n], {n, 5, 106}] (* Jean-Fran├žois Alcover, Nov 29 2017 *)

CROSSREFS

Cf. A173980, A020639, A173978, A173977, A173979, A174217, A174216, A174214, A174215, A166945, A167495.

Sequence in context: A014651 A275422 A169951 * A082063 A260148 A327778

Adjacent sequences:  A174450 A174451 A174452 * A174454 A174455 A174456

KEYWORD

nonn,uned

AUTHOR

Vladimir Shevelev, Mar 20 2010

EXTENSIONS

Terms beyond a(34) from R. J. Mathar, Nov 04 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 12 09:23 EDT 2020. Contains 335657 sequences. (Running on oeis4.)