login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174453
a(n) is the smallest k >= 1 for which gcd(m + (-1)^m, m + n - 4) > 1, where m = n + k - 1.
1
1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 12, 1, 2, 1, 1, 1, 18, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 30, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 42, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 60, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 72, 1, 2, 1, 1, 1, 9, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 102
OFFSET
5,2
COMMENTS
If a(n) > sqrt(n), then n-3 is the larger of twin primes. In these cases we have a(10)=5 and, for n > 10, a(n) = n-4. For odd n and for n == 2 (mod 6), a(n)=1; for n == 0 (mod 6), a(n)=2; for {n == 4 (mod 6)} & {n == 8 (mod 10)}, a(n)=4, etc. The problem is to develop this sieve for the excluding n for which a(n) <= sqrt(n) and to obtain nontrivial lower estimates for the counting function of the larger of twin primes.
LINKS
V. Shevelev, Theorems on twin primes-dual case, arXiv:0912.4006 [math.GM], 2009-2014.
MAPLE
A174453 := proc(n) local k, m ; for k from 1 do m := n+k-1 ; if igcd(m+(-1)^m, m+n-4) > 1 then return k; end if; end do: end proc: seq(A174453(n), n=5..120); # R. J. Mathar, Nov 04 2010
MATHEMATICA
a[n_] := For[k=1, True, k++, m=n+k-1; If[GCD[m+(-1)^m, m+n-4]>1, Return[k]] ];
Table[a[n], {n, 5, 106}] (* Jean-François Alcover, Nov 29 2017 *)
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Mar 20 2010
EXTENSIONS
Terms beyond a(34) from R. J. Mathar, Nov 04 2010
STATUS
approved