Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Oct 16 2024 16:35:04
%S 1,2,1,1,1,5,1,2,1,1,1,12,1,2,1,1,1,18,1,2,1,1,1,4,1,2,1,1,1,30,1,2,1,
%T 1,1,5,1,2,1,1,1,42,1,2,1,1,1,6,1,2,1,1,1,4,1,2,1,1,1,60,1,2,1,1,1,5,
%U 1,2,1,1,1,72,1,2,1,1,1,9,1,2,1,1,1,4,1,2,1,1,1,6,1,2,1,1,1,5,1,2,1,1,1,102
%N a(n) is the smallest k >= 1 for which gcd(m + (-1)^m, m + n - 4) > 1, where m = n + k - 1.
%C If a(n) > sqrt(n), then n-3 is the larger of twin primes. In these cases we have a(10)=5 and, for n > 10, a(n) = n-4. For odd n and for n == 2 (mod 6), a(n)=1; for n == 0 (mod 6), a(n)=2; for {n == 4 (mod 6)} & {n == 8 (mod 10)}, a(n)=4, etc. The problem is to develop this sieve for the excluding n for which a(n) <= sqrt(n) and to obtain nontrivial lower estimates for the counting function of the larger of twin primes.
%H Paul Tek, <a href="/A174453/b174453.txt">Table of n, a(n) for n = 5..10000</a>
%H V. Shevelev, <a href="https://arxiv.org/abs/0912.4006">Theorems on twin primes-dual case</a>, arXiv:0912.4006 [math.GM], 2009-2014.
%p A174453 := proc(n) local k,m ; for k from 1 do m := n+k-1 ; if igcd(m+(-1)^m,m+n-4) > 1 then return k; end if; end do: end proc: seq(A174453(n),n=5..120); # _R. J. Mathar_, Nov 04 2010
%t a[n_] := For[k=1, True, k++, m=n+k-1; If[GCD[m+(-1)^m, m+n-4]>1, Return[k]] ];
%t Table[a[n], {n, 5, 106}] (* _Jean-François Alcover_, Nov 29 2017 *)
%Y Cf. A173980, A020639, A173978, A173977, A173979, A174217, A174216, A174214, A174215, A166945, A167495.
%K nonn
%O 5,2
%A _Vladimir Shevelev_, Mar 20 2010
%E Terms beyond a(34) from _R. J. Mathar_, Nov 04 2010