login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174451
Triangle T(n, k, q) = n!*(n+1)!*q^k/((n-k)!(n-k+1)!) if floor(n/2) > k-1, otherwise n!*(n+1)!*q^(n-k)/(k!*(k+1)!) for q = 3, read by rows.
3
1, 1, 1, 1, 18, 1, 1, 36, 36, 1, 1, 60, 2160, 60, 1, 1, 90, 5400, 5400, 90, 1, 1, 126, 11340, 680400, 11340, 126, 1, 1, 168, 21168, 1905120, 1905120, 21168, 168, 1, 1, 216, 36288, 4572288, 411505920, 4572288, 36288, 216, 1, 1, 270, 58320, 9797760, 1234517760, 1234517760, 9797760, 58320, 270, 1
OFFSET
0,5
FORMULA
T(n, k, q) = n!*(n+1)!*q^k/((n-k)!(n-k+1)!) if floor(n/2) > k-1, otherwise n!*(n+1)!*q^(n-k)/(k!*(k+1)!) for q = 3.
T(n, n-k, q) = T(n, k, q).
From G. C. Greubel, Nov 29 2021: (Start)
T(2*n, n, q) = q^n*(2*n+1)!*Catalan(n) for q = 3.
T(n, k, q) = binomial(n, k)*binomial(n+1, k+1) * ( k!*(k+1)!*q^k/(n-k+1) if (floor(n/2) >= k), otherwise ((n-k)!)^2*q^(n-k) ), for q = 3. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 18, 1;
1, 36, 36, 1;
1, 60, 2160, 60, 1;
1, 90, 5400, 5400, 90, 1;
1, 126, 11340, 680400, 11340, 126, 1;
1, 168, 21168, 1905120, 1905120, 21168, 168, 1;
1, 216, 36288, 4572288, 411505920, 4572288, 36288, 216, 1;
1, 270, 58320, 9797760, 1234517760, 1234517760, 9797760, 58320, 270, 1;
MATHEMATICA
T[n_, k_, q_]:= If[Floor[n/2]>k-1, n!*(n+1)!*q^k/((n-k)!*(n-k+1)!), n!*(n+1)!*q^(n-k)/(k!*(k+1)!)];
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Magma)
F:= Factorial; // T = A174451
T:= func< n, k, q | Floor(n/2) gt k-1 select F(n)*F(n+1)*q^k/(F(n-k)*F(n-k+1)) else F(n)*F(n+1)*q^(n-k)/(F(k)*F(k+1)) >;
[T(n, k, 3): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 29 2021
(Sage)
f=factorial
def A174451(n, k, q):
if ((n//2)>k-1): return f(n)*f(n+1)*q^k/(f(n-k)*f(n-k+1))
else: return f(n)*f(n+1)*q^(n-k)/(f(k)*f(k+1))
flatten([[A174451(n, k, 3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 29 2021
CROSSREFS
Cf. A174449 (q=1), A174450 (q=2), this sequence (q=3).
Cf. A000108.
Sequence in context: A040324 A168623 A146774 * A144405 A202671 A203004
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Mar 20 2010
EXTENSIONS
Edited by G. C. Greubel, Nov 29 2021
STATUS
approved