login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146774
Triangle read by rows: expansion of p(x,n)=If[n == 0, 1, (x + 1)^n + 2^(n+1)*Sum[Binomial[n-m, m]*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]].
0
1, 1, 1, 1, 18, 1, 1, 35, 35, 1, 1, 100, 70, 100, 1, 1, 261, 202, 202, 261, 1, 1, 646, 783, 276, 783, 646, 1, 1, 1543, 2581, 1059, 1059, 2581, 1543, 1, 1, 3592, 7708, 5176, 1094, 5176, 7708, 3592, 1, 1, 8201, 21540, 20564, 5246, 5246, 20564, 21540, 8201, 1, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 20, 72, 272, 928, 3136, 10368, 34048, 111104, 361472}.
EXAMPLE
Triangle begins:
{1},
{1, 1},
{1, 18, 1},
{1, 35, 35, 1},
{1, 100, 70, 100, 1},
{1, 261, 202, 202, 261, 1},
{1, 646, 783, 276, 783, 646, 1},
{1, 1543, 2581, 1059, 1059, 2581, 1543, 1},
{1, 3592, 7708, 5176, 1094, 5176, 7708, 3592, 1},
{1, 8201, 21540, 20564, 5246, 5246, 20564, 21540, 8201, 1},
{1, 18442, 57389, 71800, 30930, 4348, 30930, 71800, 57389, 18442, 1}
MATHEMATICA
p[x_, n_] = If[ n == 0, 1, (x + 1)^n + 2^(n+1)*Sum[Binomial[n-m, m]*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%]
CROSSREFS
Sequence in context: A040325 A040324 A168623 * A174451 A144405 A202671
KEYWORD
nonn,tabl,less
AUTHOR
Roger L. Bagula, Nov 02 2008
STATUS
approved