login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146773
Triangle read by rows: expansion of p(x,n)=If[n == 0, 1, (x + 1)^n + 2^(n)*Sum[Binomial[n-m, m]*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]].
0
1, 1, 1, 1, 10, 1, 1, 19, 19, 1, 1, 52, 38, 52, 1, 1, 133, 106, 106, 133, 1, 1, 326, 399, 148, 399, 326, 1, 1, 775, 1301, 547, 547, 1301, 775, 1, 1, 1800, 3868, 2616, 582, 2616, 3868, 1800, 1, 1, 4105, 10788, 10324, 2686, 2686, 10324, 10788, 4105, 1, 1, 9226, 28717
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 12, 40, 144, 480, 1600, 5248, 17152, 55808, 181248}.
EXAMPLE
Triangle begins:
{1},
{1, 1},
{1, 10, 1},
{1, 19, 19, 1},
{1, 52, 38, 52, 1},
{1, 133, 106, 106, 133, 1},
{1, 326, 399, 148, 399, 326, 1},
{1, 775, 1301, 547, 547, 1301, 775, 1},
{1, 1800, 3868, 2616, 582, 2616, 3868, 1800, 1},
{1, 4105, 10788, 10324, 2686, 2686, 10324, 10788, 4105, 1},
{1, 9226, 28717, 35960, 15570, 2300, 15570, 35960, 28717, 9226, 1}
MATHEMATICA
p[x_, n_] = If[ n == 0, 1, (x + 1)^n + 2^(n)*Sum[Binomial[n-m, m]*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%]
CROSSREFS
Sequence in context: A378544 A168620 A143683 * A202941 A166341 A113280
KEYWORD
nonn,tabl,less
AUTHOR
Roger L. Bagula, Nov 02 2008
STATUS
approved