login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144405
Triangle T(n,k) = binomial(n, k)*(3*binomial(n, k)^2 - binomial(n, k) - 1), read by rows.
2
1, 1, 1, 1, 18, 1, 1, 69, 69, 1, 1, 172, 606, 172, 1, 1, 345, 2890, 2890, 345, 1, 1, 606, 9885, 23580, 9885, 606, 1, 1, 973, 27321, 127365, 127365, 27321, 973, 1, 1, 1464, 65044, 523656, 1024030, 523656, 65044, 1464, 1, 1, 2097, 138636, 1770972, 5985126, 5985126, 1770972, 138636, 2097, 1
OFFSET
0,5
FORMULA
T(n,k) = binomial(n, k)*(3*binomial(n, k)^2 - binomial(n, k) - 1).
Sum_{k=0..n} T(n, k) = A000172(n) - A000984(n) - 2^n = Hypergeometric3F2([-n, -n, -n], [1, 1], -1) - binomial(2*n, n) - 2^n. - G. C. Greubel, Mar 27 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 18, 1;
1, 69, 69, 1;
1, 172, 606, 172, 1;
1, 345, 2890, 2890, 345, 1;
1, 606, 9885, 23580, 9885, 606, 1;
1, 973, 27321, 127365, 127365, 27321, 973, 1;
1, 1464, 65044, 523656, 1024030, 523656, 65044, 1464, 1;
1, 2097, 138636, 1770972, 5985126, 5985126, 1770972, 138636, 2097, 1;
1, 2890, 271305, 5169480, 27738690, 47945268, 27738690, 5169480, 271305, 2890, 1;
MAPLE
A144405:= (n, k) -> binomial(n, k)*(3*binomial(n, k)^2 - binomial(n, k) - 1);
seq(seq( A144405(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 27 2021
MATHEMATICA
Table[Table[Binomial[n, m]*(3*Binomial[n, m]^2 - Binomial[n, m] - 1), {m, 0, n}], {n, 0, 10}]; Flatten[%]
PROG
(Magma) [Binomial(n, k)*(3*Binomial(n, k)^2 - Binomial(n, k) - 1): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 27 2021
(Sage) flatten([[binomial(n, k)*(3*binomial(n, k)^2 - binomial(n, k) - 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 27 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Edited by G. C. Greubel, Mar 27 2021
STATUS
approved