login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155497
Triangle T(n, k) = binomial(n, k)*binomial(n+1, k+1)*binomial(2*n, 2*k)/(n-k+1), read by rows.
2
1, 1, 1, 1, 18, 1, 1, 90, 90, 1, 1, 280, 1400, 280, 1, 1, 675, 10500, 10500, 675, 1, 1, 1386, 51975, 161700, 51975, 1386, 1, 1, 2548, 196196, 1471470, 1471470, 196196, 2548, 1, 1, 4320, 611520, 9417408, 22702680, 9417408, 611520, 4320, 1, 1, 6885, 1652400, 46781280, 231567336, 231567336, 46781280, 1652400, 6885, 1
OFFSET
0,5
FORMULA
T(n, k) = binomial(n, k)*binomial(2*n, 2*k)*f(n)/(f(k)*f[n-k)), where f(n) = Product_{j=1..n+1} j.
T(n, k) = binomial(n, k)*binomial(n+1, k+1)*binomial(2*n, 2*k)/(n-k+1).
From G. C. Greubel, May 29 2021: (Start)
Sum_{k=0..n} T(n, k) = Hypergeometric4F3([-n, -n, -n-1, -n-1/2], [1/2, 1, 2], 1).
T(n, k) = binomial(n, k)*A155495(n, k)/(n-k+1).
T(n, k) = binomial(2*n, 2*k)*A103371(n, k)/(n-k+1). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 18, 1;
1, 90, 90, 1;
1, 280, 1400, 280, 1;
1, 675, 10500, 10500, 675, 1;
1, 1386, 51975, 161700, 51975, 1386, 1;
1, 2548, 196196, 1471470, 1471470, 196196, 2548, 1;
1, 4320, 611520, 9417408, 22702680, 9417408, 611520, 4320, 1;
1, 6885, 1652400, 46781280, 231567336, 231567336, 46781280, 1652400, 6885, 1;
MATHEMATICA
T[n_, k_]:= Binomial[n, k]*Binomial[n+1, k+1]*Binomial[2*n, 2*k]/(n-k+1);
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 29 2021 *)
PROG
(Magma) [Binomial(n, k)*Binomial(n+1, k+1)*Binomial(2*n, 2*k)/(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, May 29 2021
(Sage) flatten([[binomial(n, k)*binomial(n+1, k+1)*binomial(2*n, 2*k)/(n-k+1) for k in (0..12)] for n in (0..12)]) # G. C. Greubel, May 29 2021
CROSSREFS
Sequence in context: A144405 A202671 A203004 * A202677 A179838 A174678
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Jan 23 2009
EXTENSIONS
Edited by G. C. Greubel, May 29 2021
STATUS
approved