OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = binomial(n, k)*binomial(2*n, 2*k)*f(n)/(f(k)*f[n-k)), where f(n) = Product_{j=1..n+1} j.
T(n, k) = binomial(n, k)*binomial(n+1, k+1)*binomial(2*n, 2*k)/(n-k+1).
From G. C. Greubel, May 29 2021: (Start)
Sum_{k=0..n} T(n, k) = Hypergeometric4F3([-n, -n, -n-1, -n-1/2], [1/2, 1, 2], 1).
T(n, k) = binomial(n, k)*A155495(n, k)/(n-k+1).
T(n, k) = binomial(2*n, 2*k)*A103371(n, k)/(n-k+1). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 18, 1;
1, 90, 90, 1;
1, 280, 1400, 280, 1;
1, 675, 10500, 10500, 675, 1;
1, 1386, 51975, 161700, 51975, 1386, 1;
1, 2548, 196196, 1471470, 1471470, 196196, 2548, 1;
1, 4320, 611520, 9417408, 22702680, 9417408, 611520, 4320, 1;
1, 6885, 1652400, 46781280, 231567336, 231567336, 46781280, 1652400, 6885, 1;
MATHEMATICA
T[n_, k_]:= Binomial[n, k]*Binomial[n+1, k+1]*Binomial[2*n, 2*k]/(n-k+1);
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 29 2021 *)
PROG
(Magma) [Binomial(n, k)*Binomial(n+1, k+1)*Binomial(2*n, 2*k)/(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, May 29 2021
(Sage) flatten([[binomial(n, k)*binomial(n+1, k+1)*binomial(2*n, 2*k)/(n-k+1) for k in (0..12)] for n in (0..12)]) # G. C. Greubel, May 29 2021
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Jan 23 2009
EXTENSIONS
Edited by G. C. Greubel, May 29 2021
STATUS
approved