The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155494 Triangle T(n, k) = (k+1)*(n-k+1)*binomial(n,k) with T(n, 0) = T(n, n) = 1, read by rows. 1
 1, 1, 1, 1, 8, 1, 1, 18, 18, 1, 1, 32, 54, 32, 1, 1, 50, 120, 120, 50, 1, 1, 72, 225, 320, 225, 72, 1, 1, 98, 378, 700, 700, 378, 98, 1, 1, 128, 588, 1344, 1750, 1344, 588, 128, 1, 1, 162, 864, 2352, 3780, 3780, 2352, 864, 162, 1, 1, 200, 1215, 3840, 7350, 9072, 7350, 3840, 1215, 200, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS G. C. Greubel, Rows n = 0..50 of the triangle, flattened FORMULA T(n, k) = (k+1)*(n-k+1)*binomial(n,k) with T(n, 0) = T(n, n) = 1. Sum_{k=0..n} T(n, k) = 2^(n-2)*(n^2 +3*n +4) -2*n. - G. C. Greubel, May 27 2021 EXAMPLE Triangle begins as: 1; 1, 1; 1, 8, 1; 1, 18, 18, 1; 1, 32, 54, 32, 1; 1, 50, 120, 120, 50, 1; 1, 72, 225, 320, 225, 72, 1; 1, 98, 378, 700, 700, 378, 98, 1; 1, 128, 588, 1344, 1750, 1344, 588, 128, 1; 1, 162, 864, 2352, 3780, 3780, 2352, 864, 162, 1; 1, 200, 1215, 3840, 7350, 9072, 7350, 3840, 1215, 200, 1; MATHEMATICA T[n_, k_]:= If[k*(n-k)==0, 1, (k+1)*(n-k+1)*Binomial[n, k]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 27 2021 *) PROG (Magma) A155494:= func< n, k | k eq 0 or k eq n select 1 else (k+1)*(n-k+1)*Binomial(n, k) >; [A155494(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 27 2021 (Sage) def A155494(n, k): return 1 if (k==0 or k==n) else (k+1)*(n-k+1)*binomial(n, k) flatten([[A155494(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2021 CROSSREFS Sequence in context: A174125 A051425 A051469 * A154227 A166340 A157178 Adjacent sequences: A155491 A155492 A155493 * A155495 A155496 A155497 KEYWORD nonn,tabl,easy AUTHOR Roger L. Bagula, Jan 23 2009 EXTENSIONS Edited by G. C. Greubel, May 27 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 22:21 EDT 2024. Contains 373391 sequences. (Running on oeis4.)