OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = binomial(n+1, k)*t(n, k, m)/(k+1), where t(n,k,m) = (m*(n-k)+1)*t(n-1,k-1,m) + (m*k-m+1)*t(n-1,k,m), t(n,1,m) = t(n,n,m) = 1, and m = 4.
From G. C. Greubel, Apr 01 2022: (Start)
T(n, k) = binomial(n+1, k)*A142459(n+1, k+1)/(k+1).
T(n, n-k) = T(n, k). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 15, 1;
1, 118, 118, 1;
1, 770, 3540, 770, 1;
1, 4671, 67810, 67810, 4671, 1;
1, 27321, 1039689, 3085355, 1039689, 27321, 1;
1, 156220, 14006244, 99524810, 99524810, 14006244, 156220, 1;
1, 878868, 173788752, 2602528824, 6090918372, 2602528824, 173788752, 878868, 1;
MATHEMATICA
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1, k-1, m] + (m*k -(m -1))*t[n-1, k, m]];
T[n_, k_, m_]:= Binomial[n+1, k]*t[n+1, k+1, m]/(k+1);
Table[T[n, k, 4], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 01 2022 *)
PROG
(Sage)
@CachedFunction
def t(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*t(n-1, k-1, m) + (m*k-m+1)*t(n-1, k, m)
def T(n, k, m): return binomial(n+1, k)*t(n+1, k+1, m)/(k+1)
flatten([[T(n, k, 4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 01 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jan 23 2009
EXTENSIONS
Edited by G. C. Greubel, Apr 01 2022
STATUS
approved