login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155491
Triangle T(n, k) = binomial(n+1, k)*A142458(n+1, k+1)/(k+1), read by rows.
4
1, 1, 1, 1, 12, 1, 1, 78, 78, 1, 1, 415, 1820, 415, 1, 1, 2031, 27410, 27410, 2031, 1, 1, 9534, 330225, 959350, 330225, 9534, 1, 1, 43660, 3488884, 23935450, 23935450, 3488884, 43660, 1, 1, 196569, 33888576, 484631574, 1120179060, 484631574, 33888576, 196569, 1
OFFSET
0,5
FORMULA
T(n, k) = binomial(n+1, k)*t(n, k, m)/(k+1), where t(n,k,m) = (m*(n-k)+1)*t(n-1,k-1,m) + (m*k-m+1)*t(n-1,k,m), t(n,1,m) = t(n,n,m) = 1, and m = 3.
From G. C. Greubel, Apr 01 2022: (Start)
T(n, k) = binomial(n+1, k)*A142458(n+1, k+1)/(k+1).
T(n, n-k) = T(n, k). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 12, 1;
1, 78, 78, 1;
1, 415, 1820, 415, 1;
1, 2031, 27410, 27410, 2031, 1;
1, 9534, 330225, 959350, 330225, 9534, 1;
1, 43660, 3488884, 23935450, 23935450, 3488884, 43660, 1;
1, 196569, 33888576, 484631574, 1120179060, 484631574, 33888576, 196569, 1;
MATHEMATICA
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1, k-1, m] + (m*k -(m -1))*t[n-1, k, m]];
T[n_, k_, m_]:= Binomial[n+1, k]*t[n+1, k+1, m]/(k+1);
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 01 2022 *)
PROG
(Sage)
@CachedFunction
def t(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*t(n-1, k-1, m) + (m*k-m+1)*t(n-1, k, m)
def T(n, k, m): return binomial(n+1, k)*t(n+1, k+1, m)/(k+1)
flatten([[T(n, k, 3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 01 2022
CROSSREFS
Cf. A001263 (m=0), A155467 (m=1), this sequence (m=3), A155493 (m=4).
Cf. A142458.
Sequence in context: A174672 A174151 A342890 * A142460 A156280 A166962
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jan 23 2009
EXTENSIONS
Edited by G. C. Greubel, Apr 01 2022
STATUS
approved