login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174672
Sequence A154693 adjusted to leading one:t(n,m)=A154693(n,m)-A154693(n,0)+1
0
1, 1, 1, 1, 12, 1, 1, 58, 58, 1, 1, 244, 512, 244, 1, 1, 994, 3592, 3592, 994, 1, 1, 4016, 23756, 38592, 23756, 4016, 1, 1, 16174, 154420, 374728, 374728, 154420, 16174, 1, 1, 65004, 993088, 3529104, 4997824, 3529104, 993088, 65004, 1, 1, 260842, 6314368
OFFSET
0,5
COMMENTS
Row sums are:
1, 2, 14, 118, 1002, 9174, 94138, 1090646, 14172218, 204490006, 3245253882,...
FORMULA
t(n,m)=A154693(n,m)-A154693(n,0)+1
EXAMPLE
{1},
{1, 1},
{1, 12, 1},
{1, 58, 58, 1},
{1, 244, 512, 244, 1},
{1, 994, 3592, 3592, 994, 1},
{1, 4016, 23756, 38592, 23756, 4016, 1},
{1, 16174, 154420, 374728, 374728, 154420, 16174, 1},
{1, 65004, 993088, 3529104, 4997824, 3529104, 993088, 65004, 1},
{1, 260842, 6314368, 32773312, 62896480, 62896480, 32773312, 6314368, 260842, 1},
{1, 1045480, 39684596, 299673344, 779048096, 1006350848, 779048096, 299673344, 39684596, 1045480, 1}
MATHEMATICA
Clear[t, p, q, n, m];
p = 2; q = 1;
t[n_, m_] = (p^(n - m)*q^m + p^m*q^( n - m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Mar 26 2010
STATUS
approved