login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174669
Sequence A154690 adjusted to leading one:t(n,m)=A154690(n,m)-A154690(n,0)+1
0
1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 24, 32, 24, 1, 1, 58, 88, 88, 58, 1, 1, 140, 236, 256, 236, 140, 1, 1, 334, 628, 712, 712, 628, 334, 1, 1, 784, 1648, 1984, 1984, 1984, 1648, 784, 1, 1, 1810, 4240, 5536, 5536, 5536, 5536, 4240, 1810, 1, 1, 4116, 10676, 15296, 15776
OFFSET
0,5
COMMENTS
Row sums are:
1, 2, 6, 22, 82, 294, 1010, 3350, 10818, 34246, 106834,...
FORMULA
t(n,m)=A154690(n,m)-A154690(n,0)+1
EXAMPLE
{1},
{1, 1},
{1, 4, 1},
{1, 10, 10, 1},
{1, 24, 32, 24, 1},
{1, 58, 88, 88, 58, 1},
{1, 140, 236, 256, 236, 140, 1},
{1, 334, 628, 712, 712, 628, 334, 1},
{1, 784, 1648, 1984, 1984, 1984, 1648, 784, 1},
{1, 1810, 4240, 5536, 5536, 5536, 5536, 4240, 1810, 1},
{1, 4116, 10676, 15296, 15776, 15104, 15776, 15296, 10676, 4116, 1}
MATHEMATICA
a = 2; b = 1;
t[n_, m_] = (a^m*b^(n - m) + b^m*a^(n - m))*Binomial[n, m];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
A154690(n, m)
Sequence in context: A056939 A202924 A142595 * A140711 A164366 A121692
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Mar 26 2010
STATUS
approved