login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174667
Sequence A154692 adjusted to leading one:t(n,m)=A154692(n,m)-A154692(n,0)+1
0
1, 1, 1, 1, 12, 1, 1, 56, 56, 1, 1, 216, 336, 216, 1, 1, 776, 1526, 1526, 776, 1, 1, 2700, 6228, 7848, 6228, 2700, 1, 1, 9236, 24146, 35486, 35486, 24146, 9236, 1, 1, 31248, 90960, 150432, 174624, 150432, 90960, 31248, 1, 1, 104816, 336206, 614846, 796286
OFFSET
0,5
COMMENTS
Row sums are:
1, 2, 14, 114, 770, 4606, 25706, 137738, 719906, 3704310, 18870458,...
FORMULA
t(n,m)=A154692(n,m)-A154692(n,0)+1
EXAMPLE
{1},
{1, 1},
{1, 12, 1},
{1, 56, 56, 1},
{1, 216, 336, 216, 1},
{1, 776, 1526, 1526, 776, 1},
{1, 2700, 6228, 7848, 6228, 2700, 1},
{1, 9236, 24146, 35486, 35486, 24146, 9236, 1},
{1, 31248, 90960, 150432, 174624, 150432, 90960, 31248, 1},
{1, 104816, 336206, 614846, 796286, 796286, 614846, 336206, 104816, 1},
{1, 348948, 1224588, 2454168, 3478008, 3859032, 3478008, 2454168, 1224588, 348948, 1}
MATHEMATICA
a = 2; b = 3;
t[n_, m_] = (a^m*b^(n - m) + b^m*a^(n - m))*Binomial[n, m];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
A154692(n, m)
Sequence in context: A157273 A350729 A168518 * A174672 A174151 A342890
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Mar 26 2010
STATUS
approved