login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sequence A154690 adjusted to leading one:t(n,m)=A154690(n,m)-A154690(n,0)+1
0

%I #2 Mar 30 2012 17:34:39

%S 1,1,1,1,4,1,1,10,10,1,1,24,32,24,1,1,58,88,88,58,1,1,140,236,256,236,

%T 140,1,1,334,628,712,712,628,334,1,1,784,1648,1984,1984,1984,1648,784,

%U 1,1,1810,4240,5536,5536,5536,5536,4240,1810,1,1,4116,10676,15296,15776

%N Sequence A154690 adjusted to leading one:t(n,m)=A154690(n,m)-A154690(n,0)+1

%C Row sums are:

%C 1, 2, 6, 22, 82, 294, 1010, 3350, 10818, 34246, 106834,...

%F t(n,m)=A154690(n,m)-A154690(n,0)+1

%e {1},

%e {1, 1},

%e {1, 4, 1},

%e {1, 10, 10, 1},

%e {1, 24, 32, 24, 1},

%e {1, 58, 88, 88, 58, 1},

%e {1, 140, 236, 256, 236, 140, 1},

%e {1, 334, 628, 712, 712, 628, 334, 1},

%e {1, 784, 1648, 1984, 1984, 1984, 1648, 784, 1},

%e {1, 1810, 4240, 5536, 5536, 5536, 5536, 4240, 1810, 1},

%e {1, 4116, 10676, 15296, 15776, 15104, 15776, 15296, 10676, 4116, 1}

%t a = 2; b = 1;

%t t[n_, m_] = (a^m*b^(n - m) + b^m*a^(n - m))*Binomial[n, m];

%t Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];

%t Flatten[%]

%Y A154690(n, m)

%K nonn,tabl,uned

%O 0,5

%A _Roger L. Bagula_, Mar 26 2010