login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = binomial(n+1, k)*A142459(n+1, k+1)/(k+1), read by rows.
3

%I #7 Apr 01 2022 18:23:43

%S 1,1,1,1,15,1,1,118,118,1,1,770,3540,770,1,1,4671,67810,67810,4671,1,

%T 1,27321,1039689,3085355,1039689,27321,1,1,156220,14006244,99524810,

%U 99524810,14006244,156220,1,1,878868,173788752,2602528824,6090918372,2602528824,173788752,878868,1

%N Triangle T(n, k) = binomial(n+1, k)*A142459(n+1, k+1)/(k+1), read by rows.

%H G. C. Greubel, <a href="/A155493/b155493.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k) = binomial(n+1, k)*t(n, k, m)/(k+1), where t(n,k,m) = (m*(n-k)+1)*t(n-1,k-1,m) + (m*k-m+1)*t(n-1,k,m), t(n,1,m) = t(n,n,m) = 1, and m = 4.

%F From _G. C. Greubel_, Apr 01 2022: (Start)

%F T(n, k) = binomial(n+1, k)*A142459(n+1, k+1)/(k+1).

%F T(n, n-k) = T(n, k). (End)

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 15, 1;

%e 1, 118, 118, 1;

%e 1, 770, 3540, 770, 1;

%e 1, 4671, 67810, 67810, 4671, 1;

%e 1, 27321, 1039689, 3085355, 1039689, 27321, 1;

%e 1, 156220, 14006244, 99524810, 99524810, 14006244, 156220, 1;

%e 1, 878868, 173788752, 2602528824, 6090918372, 2602528824, 173788752, 878868, 1;

%t t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k -(m -1))*t[n-1,k,m]];

%t T[n_, k_, m_]:= Binomial[n+1,k]*t[n+1,k+1,m]/(k+1);

%t Table[T[n,k,4], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Apr 01 2022 *)

%o (Sage)

%o @CachedFunction

%o def t(n,k,m):

%o if (k==1 or k==n): return 1

%o else: return (m*(n-k)+1)*t(n-1,k-1,m) + (m*k-m+1)*t(n-1,k,m)

%o def T(n,k,m): return binomial(n+1,k)*t(n+1,k+1,m)/(k+1)

%o flatten([[T(n,k,4) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Apr 01 2022

%Y Cf. A001263 (m=0), A155467 (m=1), A155491 (m=3), this sequence (m=4).

%Y Cf. A142459.

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_, Jan 23 2009

%E Edited by _G. C. Greubel_, Apr 01 2022