login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157178
A new general triangle sequence based on the Eulerian form in three parts:m=2; t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]] t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) + (m*k + 1)*t0(n - 1 + 1, k) + m*k*(n - k)*t0(n - 2 + 1, k - 1)].
0
1, 1, 1, 1, 8, 1, 1, 21, 21, 1, 1, 46, 142, 46, 1, 1, 95, 644, 644, 95, 1, 1, 192, 2439, 5416, 2439, 192, 1, 1, 385, 8415, 34879, 34879, 8415, 385, 1, 1, 770, 27556, 192286, 358454, 192286, 27556, 770, 1, 1, 1539, 87486, 962090, 3001044, 3001044, 962090, 87486
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 10, 44, 236, 1480, 10680, 87360, 799680, 8104320, 90115200,...}.
The m=1 of the general sequence is A008518.
FORMULA
m=2;
t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]];
t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) +
(m*k + 1)*t0(n - 1 + 1, k) +
m*k*(n - k)*t0(n - 2 + 1, k - 1)].
EXAMPLE
{1},
{1, 1},
{1, 8, 1},
{1, 21, 21, 1},
{1, 46, 142, 46, 1},
{1, 95, 644, 644, 95, 1},
{1, 192, 2439, 5416, 2439, 192, 1},
{1, 385, 8415, 34879, 34879, 8415, 385, 1},
{1, 770, 27556, 192286, 358454, 192286, 27556, 770, 1},
{1, 1539, 87486, 962090, 3001044, 3001044, 962090, 87486, 1539, 1},
{1, 3076, 272485, 4517480, 21945914, 36637288, 21945914, 4517480, 272485, 3076, 1}
MATHEMATICA
Clear[t, n, k, m];
t[n_, k_, m_] = (m*(n - k) + 1)*Binomial[n - 1, k - 1] + (m*k + 1)*Binomial[n - 1, k] - m*k*(n - k)*Binomial[n - 2, k - 1];
Table[t[n, k, m], {m, 0, 10}, {n, 0, 10}, {k, 0, n}];
Table[Flatten[Table[Table[t[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 10}]
Table[Table[Sum[t[n, k, m], {k, 0, n}], {n, 0, 10}], {m, 0, 10}];
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved