login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157178 A new general triangle sequence based on the Eulerian form in three parts:m=2; t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]] t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) + (m*k + 1)*t0(n - 1 + 1, k) + m*k*(n - k)*t0(n - 2 + 1, k - 1)]. 0
1, 1, 1, 1, 8, 1, 1, 21, 21, 1, 1, 46, 142, 46, 1, 1, 95, 644, 644, 95, 1, 1, 192, 2439, 5416, 2439, 192, 1, 1, 385, 8415, 34879, 34879, 8415, 385, 1, 1, 770, 27556, 192286, 358454, 192286, 27556, 770, 1, 1, 1539, 87486, 962090, 3001044, 3001044, 962090, 87486 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Row sums are:

{1, 2, 10, 44, 236, 1480, 10680, 87360, 799680, 8104320, 90115200,...}.

The m=1 of the general sequence is A008518.

LINKS

Table of n, a(n) for n=0..52.

FORMULA

m=2;

t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]];

t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) +

(m*k + 1)*t0(n - 1 + 1, k) +

m*k*(n - k)*t0(n - 2 + 1, k - 1)].

EXAMPLE

{1},

{1, 1},

{1, 8, 1},

{1, 21, 21, 1},

{1, 46, 142, 46, 1},

{1, 95, 644, 644, 95, 1},

{1, 192, 2439, 5416, 2439, 192, 1},

{1, 385, 8415, 34879, 34879, 8415, 385, 1},

{1, 770, 27556, 192286, 358454, 192286, 27556, 770, 1},

{1, 1539, 87486, 962090, 3001044, 3001044, 962090, 87486, 1539, 1},

{1, 3076, 272485, 4517480, 21945914, 36637288, 21945914, 4517480, 272485, 3076, 1}

MATHEMATICA

Clear[t, n, k, m];

t[n_, k_, m_] = (m*(n - k) + 1)*Binomial[n - 1, k - 1] + (m*k + 1)*Binomial[n - 1, k] - m*k*(n - k)*Binomial[n - 2, k - 1];

Table[t[n, k, m], {m, 0, 10}, {n, 0, 10}, {k, 0, n}];

Table[Flatten[Table[Table[t[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 10}]

Table[Table[Sum[t[n, k, m], {k, 0, n}], {n, 0, 10}], {m, 0, 10}];

CROSSREFS

A008518

Sequence in context: A155494 A154227 A166340 * A174303 A176488 A144436

Adjacent sequences:  A157175 A157176 A157177 * A157179 A157180 A157181

KEYWORD

nonn,tabl

AUTHOR

Roger L. Bagula and Gary W. Adamson, Feb 24 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 12:30 EST 2019. Contains 329895 sequences. (Running on oeis4.)