The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144408 Last digit of A135266(n). 0
 0, 1, 5, 9, 0, 2, 6, 9, 9, 1, 6, 0, 0, 1, 5, 9, 0, 2, 6, 9, 9, 1, 6, 0, 0, 1, 5, 9, 0, 2, 6, 9, 9, 1, 6, 0, 0, 1, 5, 9, 0, 2, 6, 9, 9, 1, 6, 0, 0, 1, 5, 9, 0, 2, 6, 9, 9, 1, 6, 0, 0, 1, 5, 9, 0, 2, 6, 9, 9, 1, 6, 0, 0, 1, 5, 9, 0, 2, 6, 9, 9, 1, 6, 0, 0, 1, 5, 9, 0, 2, 6, 9, 9, 1, 6, 0, 0, 1, 5, 9, 0, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA Period 12: a(n+12)=a(n). Sums of periodic trisections: a(3n)+a(3n+3)+a(3n+6)+a(3n+9) = a(3n+1)+a(3n+4)+a(3n+7)+a(3n+10) = a(3n+2)+a(3n+5)+a(3n+8)+a(3n+11) = 16. a(n)=(1/132)*{8*(n mod 12)+74*[(n+1) mod 12]-47*[(n+2) mod 12]+96*[(n+3) mod 12]+8*[(n+4) mod 12]-25*[(n+5) mod 12]-36*[(n+6) mod 12]-14*[(n+7) mod 12]+107*[(n+8) mod 12]-36*[(n+9) mod 12]-36*[(n+10) mod 12]-3*[(n+11) mod 12]}, with n>=0 [From Paolo P. Lava, Oct 22 2008] G.f.: x(6x^7-5x^6+8x^5+6x^4-8x^3+4x^2+4x+1)/((1-x)(1+x)(x^2+1)(x^2-x+1)(x^4-x^2+1)). - R. J. Mathar, Dec 02 2008 CROSSREFS Sequence in context: A249205 A344966 A294613 * A019636 A269979 A102521 Adjacent sequences:  A144405 A144406 A144407 * A144409 A144410 A144411 KEYWORD nonn,base AUTHOR Paul Curtz, Sep 30 2008 EXTENSIONS Edited by R. J. Mathar, Dec 02 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 06:12 EDT 2021. Contains 347551 sequences. (Running on oeis4.)