OFFSET
0,4
COMMENTS
From Omar E. Pol, Jan 19 2013: (Start)
Column 3 of triangle A220504.
With offset 3, a(n) is also the number of appearances of 3 as the smallest part in all partitions of n.
Also consider the sequence formed by [0, 0] together with this sequence, with offset 1, then it appears that A027336(n) = Sum_{j=1..3} a(n+j), n >= 0.
(End)
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
FORMULA
G.f.: 1/( (1-x^3) * Product_{n>=3} (1-x^n) ). [Joerg Arndt, Jul 07 2012]
a(n) = A182713(n+2) - A182713(n) = A240056(n+1) - A240056(n) for n >= 0. - Clark Kimberling, Mar 31 2014
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (9 * 2^(3/2) * n^(3/2)). - Vaclav Kotesovec, Jan 15 2022
EXAMPLE
a(8)=9, there are 8 such partitions of 9, they are
#1: 9 = 3* 1 + 3* 2 + 0 + 0 + 0 + 0 + 0 + 0 + 0
#2: 9 = 2* 1 + 2* 2 + 1* 3 + 0 + 0 + 0 + 0 + 0 + 0
#3: 9 = 1* 1 + 1* 2 + 2* 3 + 0 + 0 + 0 + 0 + 0 + 0
#4: 9 = 0 + 0 + 3* 3 + 0 + 0 + 0 + 0 + 0 + 0
#5: 9 = 0 + 0 + 0 + 1* 4 + 1* 5 + 0 + 0 + 0 + 0
#6: 9 = 1* 1 + 1* 2 + 0 + 0 + 0 + 1* 6 + 0 + 0 + 0
#7: 9 = 0 + 0 + 1* 3 + 0 + 0 + 1* 6 + 0 + 0 + 0
#8: 9 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1* 9
MAPLE
b:= proc(n, i) option remember; local j, r; if n=0 or i<1 then 0
else `if`(i=3 and irem(n, 3, 'r')=0, r, 0); for j from 0
to n/i do %+b(n-i*j, i-1) od; % fi
end:
a:= n-> b(n+3, n+3):
seq(a(n), n=0..60); # Alois P. Heinz, Jan 20 2013
MATHEMATICA
(See A240056.) - Clark Kimberling, Mar 31 2014
m = 66; gf = 1/((1-x^3)*Product[1-x^n, {n, 3, m}]) + O[x]^m; CoefficientList[gf, x] (* Jean-François Alcover, Jul 02 2015, after Joerg Arndt *)
PROG
(PARI)
N=66; x='x+O('x^N);
gf=1/( (1-x^3) * prod(n=3, N, 1-x^n) );
Vec(gf)
/* Joerg Arndt, Jul 07 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt, Nov 28 2010
STATUS
approved