login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220504 Triangle read by rows: T(n,k) is the total number of appearances of k as the smallest part in all partitions of n. 5
1, 2, 1, 4, 0, 1, 7, 2, 0, 1, 12, 1, 0, 0, 1, 19, 4, 2, 0, 0, 1, 30, 3, 1, 0, 0, 0, 1, 45, 8, 1, 2, 0, 0, 0, 1, 67, 7, 4, 1, 0, 0, 0, 0, 1, 97, 15, 3, 1, 2, 0, 0, 0, 0, 1, 139, 15, 4, 1, 1, 0, 0, 0, 0, 0, 1, 195, 27, 8, 4, 1, 2, 0, 0, 0, 0, 0, 1, 272, 29, 8, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
In other words, T(n,k) is the total number of appearances of k in all partitions of n whose smallest part is k.
The sum of row n equals spt(n), the smallest part partition function (see A092269).
T(n,k) is also the sum of row k in the slice n of tetrahedron A209314.
LINKS
EXAMPLE
Triangle begins:
1;
2, 1;
4, 0, 1;
7, 2, 0, 1;
12, 1, 0, 0, 1;
19, 4, 2, 0, 0, 1;
30, 3, 1, 0, 0, 0, 1;
45, 8, 1, 2, 0, 0, 0, 1;
67, 7, 4, 1, 0, 0, 0, 0, 1;
97, 15, 3, 1, 2, 0, 0, 0, 0, 1;
139, 15, 4, 1, 1, 0, 0, 0, 0, 0, 1;
195, 27, 8, 4, 1, 2, 0, 0, 0, 0, 0, 1;
272, 29, 8, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1;
...
The partitions of 6 with the smallest part in brackets are
..........................
. [6]
..........................
. [3]+[3]
..........................
. 4 +[2]
. [2]+[2]+[2]
..........................
. 5 +[1]
. 3 + 2 +[1]
. 4 +[1]+[1]
. 2 + 2 +[1]+[1]
. 3 +[1]+[1]+[1]
. 2 +[1]+[1]+[1]+[1]
. [1]+[1]+[1]+[1]+[1]+[1]
..........................
There are 19 smallest parts of size 1. Also there are four smallest parts of size 2. Also there are two smallest parts of size 3. There are no smallest part of size 4 or 5. Finally there is only one smallest part of size 6. So row 6 gives 19, 4, 2, 0, 0, 1. The sum of row 6 is 19+4+2+0+0+1 = A092269(6) = 26.
MAPLE
b:= proc(n, i) option remember; local j, r; if n=0 or i<1 then 0
else `if`(irem(n, i, 'r')=0, [0$(i-1), r], []); for j from 0
to n/i do zip((x, y)->x+y, %, [b(n-i*j, i-1)], 0) od; %[] fi
end:
T:= n-> b(n, n):
seq(T(n), n=1..20); # Alois P. Heinz, Jan 20 2013
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{j, q, r, pc}, If [n == 0 || i<1, 0, {q, r} = QuotientRemainder[n, i]; pc = If[r == 0, Append[Array[0&, i-1], q], {}]; For[j = 0, j <= n/i, j++, pc = Plus @@ PadRight[{pc, b[n-i*j, i-1]}]]; pc]]; T[n_] := b[n, n]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)
CROSSREFS
Columns 1-3: A000070, A087787, A174455.
Row sums give A092269.
Sequence in context: A091604 A200192 A137629 * A087569 A341509 A048614
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Jan 19 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 10 16:32 EDT 2024. Contains 375791 sequences. (Running on oeis4.)