The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182703 Triangle read by rows: T(n,k) = number of occurrences of k in the last section of the set of partitions of n. 91
 1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 5, 1, 1, 0, 1, 7, 4, 2, 1, 0, 1, 11, 3, 2, 1, 1, 0, 1, 15, 8, 3, 3, 1, 1, 0, 1, 22, 7, 6, 2, 2, 1, 1, 0, 1, 30, 15, 6, 5, 3, 2, 1, 1, 0, 1, 42, 15, 10, 5, 4, 2, 2, 1, 1, 0, 1, 56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS For the definition of "section" of the set of partitions of n see A135010. Also, column 1 gives the number of partitions of n-1. For k >= 2, row n lists the number of k's in all partitions of n that do not contain 1 as a part. From Omar E. Pol, Feb 12 2012: (Start) It appears that reversed rows converge to A002865. It appears that row n is also the base of an isosceles triangle in which the column sums give the partition numbers A000041 in descending order starting with p(n-1) = A000041(n-1). Example for n = 7: . .         1, .      1, 0, 1, .   4, 2, 1, 0, 1, 11, 3, 2, 1, 1, 0, 1, --------------------- 11, 7, 5, 3, 2, 1, 1, . It appears that in row n starts an infinite trapezoid in which column sums always give the number of partitions of n-1. Example for n = 7: . 11, 3, 2, 1, 1, 0, 1, .   8, 3, 3, 1, 1, 0, 1, .      6, 2, 2, 1, 1, 0, 1, .         5, 3, 2, 1, 1, 0, 1, .            4, 2, 2, 1, 1, 0, 1, .               5, 2, 2, 1, 1, 0,... .                  4, 2, 2, 1, 1,... .                     4, 2, 2, 1,... .                        4, 2, 2,... .                           4, 2,... .                              4,... . The sum of any column is always p(7-1) = p(6) = A000041(6) = 11. It appears that the first term of row n is one of the vertices of an infinite isosceles triangle in which column sums give the partition numbers A000041 in ascending order starting with p(n-1) = A000041(n-1). Example for n = 7: 11, .    8, .    7,  6, .        6,  5, .       10,  5, ... .           10, ... .           10, ... ------------------- 11, 15, 22, 30, ... (End) It appears that row n lists the first differences of the row n of triangle A207031 together with 1 (as the final term of row n). - Omar E. Pol, Feb 26 2012 More generally T(n,k) is the number of occurrences of k in the n-th section of the set of partitions of any integer >= n. - Omar E. Pol, Oct 21 2013 LINKS Alois P. Heinz, Rows n = 1..141, flattened FORMULA It appears that T(n,k) = A207032(n,k) - A207032(n,k+2). - Omar E. Pol, Feb 26 2012 EXAMPLE Illustration of three arrangements of the last section of the set of partitions of 7, or more generally the 7th section of the set of partitions of any integer >= 7: .                                        _ _ _ _ _ _ _ .     (7)                    (7)        |_ _ _ _      | .     (4+3)                (4+3)        |_ _ _ _|_    | .     (5+2)                (5+2)        |_ _ _    |   | .     (3+2+2)            (3+2+2)        |_ _ _|_ _|_  | .       (1)                  (1)                    | | .         (1)                (1)                    | | .         (1)                (1)                    | | .           (1)              (1)                    | | .         (1)                (1)                    | | .           (1)              (1)                    | | .           (1)              (1)                    | | .             (1)            (1)                    | | .             (1)            (1)                    | | .               (1)          (1)                    | | .                 (1)        (1)                    |_| .    ---------------- .     19,8,5,3,2,1,1 --> Row 7 of triangle A207031. .      |/|/|/|/|/|/| .     11,3,2,1,1,0,1 --> Row 7 of this triangle. . Note that the "head" of the last section is formed by the partitions of 7 that do not contain 1 as a part. The "tail" is formed by A000041(7-1) parts of size 1. The number of rows (or zones) is A000041(7) = 15. The last section of the set of partitions of 7 contains eleven 1's, three 2's, two 3's, one 4, one 5, there are no 6's and it contains one 7. So, for k = 1..7, row 7 gives: 11, 3, 2, 1, 1, 0, 1. Triangle begins:    1;    1,  1;    2,  0,  1;    3,  2,  0,  1;    5,  1,  1,  0, 1;    7,  4,  2,  1, 0, 1;   11,  3,  2,  1, 1, 0, 1;   15,  8,  3,  3, 1, 1, 0, 1;   22,  7,  6,  2, 2, 1, 1, 0, 1;   30, 15,  6,  5, 3, 2, 1, 1, 0, 1;   42, 15, 10,  5, 4, 2, 2, 1, 1, 0, 1;   56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1;   ... MAPLE p:= (f, g)-> zip((x, y)-> x+y, f, g, 0): b:= proc(n, i) option remember; local g;       if n=0        then [1]     elif n<2 or i<2 then [0]     else g:=   `if`(i>n, [0],  b(n-i, i));          p(p([0\$j=2..i, g[1]], b(n, i-1)), g)       fi     end: h:= proc(n) option remember;       `if`(n=0, 1, b(n, n)[1]+h(n-1))     end: T:= proc(n) h(n-1), b(n, n)[2..n][] end: seq(T(n), n=1..20);  # Alois P. Heinz, Feb 19 2012 MATHEMATICA p[f_, g_] := Plus @@ PadRight[{f, g}]; b[n_, i_] := b[n, i] = Module[{g}, Which[n == 0, {1}, n<2 || i<2, {0}, True, g = If [i>n, {0}, b[n-i, i]]; p[p[Append[Array[0&, i-1], g[[1]]], b[n, i-1]], g]]]; h[n_] := h[n] = If[n == 0, 1, b[n, n][[1]] + h[n-1]]; t[n_] := {h[n-1], Sequence @@ b[n, n][[2 ;; n]]}; Table[t[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 16 2014, after Alois P. Heinz's Maple code *) Table[{PartitionsP[n-1]}~Join~Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], k], {k, 2, n}], {n, 1, 12}]  // Flatten (* Robert Price, May 15 2020 *) CROSSREFS Row sums give A138137. Where records occur is A134869. Columns 1-10: A000041, A182712-A182714, A206555-A206560. Sub-triangles (1-11): A023531, A129186, A194702-A194710 Cf. A066633, A135010, A182742, A182743, A194812, A206563, A207031, A207032, A206437, A211025. Sequence in context: A306914 A317023 A319284 * A307226 A263390 A231354 Adjacent sequences:  A182700 A182701 A182702 * A182704 A182705 A182706 KEYWORD nonn,tabl,look AUTHOR Omar E. Pol, Nov 28 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 12:27 EDT 2020. Contains 337904 sequences. (Running on oeis4.)