

A207032


Triangle read by rows: T(n,k) = number of odd/even parts >= k in the last section of the set of partitions of n, if k is odd/even.


13



1, 1, 1, 3, 0, 1, 3, 3, 0, 1, 7, 1, 2, 0, 1, 9, 6, 2, 2, 0, 1, 15, 4, 4, 1, 2, 0, 1, 19, 13, 4, 5, 1, 2, 0, 1, 32, 10, 10, 3, 4, 1, 2, 0, 1, 40, 24, 10, 9, 4, 4, 1, 2, 0, 1, 60, 23, 18, 8, 8, 3, 4, 1, 2, 0, 1, 78, 46, 22, 19, 8, 9, 3, 4, 1, 2, 0, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

For the calculation of row n, the number of odd/even parts, etc, take the row n from the triangle A207031 and then follow the same rules of A206563.


LINKS

Table of n, a(n) for n=1..78.


FORMULA

It appears that T(n,k) = abs(Sum_{j=k..n) (1)^j*A207031(n,j)).
It appears that A182703(n,k) = T(n,k)  T(n,k+2).  Omar E. Pol, Feb 26 2012


EXAMPLE

Triangle begins:
1;
1, 1;
3, 0, 1;
3, 3, 0, 1;
7, 1, 2, 0, 1;
9, 6, 2, 2, 0, 1;
15, 4, 4, 1, 2, 0, 1;
19, 13, 4, 5, 1, 2, 0, 1;
32, 10, 10, 3, 4, 1, 2, 0, 1;
40, 24, 10, 9, 4, 4, 1, 2, 0, 1;
60, 23, 18, 8, 8, 3, 4, 1, 2, 0, 1;
78, 46, 22, 19, 8, 9, 3, 4, 1, 2, 0, 1;


CROSSREFS

Cf. A006128, A066897, A066898, A135010, A138121, A138135, A138137, A141285, A181187, A182703, A206563, A207031.
Sequence in context: A130028 A129560 A218603 * A169940 A279010 A121481
Adjacent sequences: A207029 A207030 A207031 * A207033 A207034 A207035


KEYWORD

nonn,tabl


AUTHOR

Omar E. Pol, Feb 17 2012


STATUS

approved



