login
A099940
a(n) = 2*(A056855(n)) /(phi(n)*n), where phi() is the Euler phi function.
0
2, 1, 1, 1, 5, 1, 84, 11, 184, 15, 193248, 23, 19056960, 833, 33740, 64035, 520105017600, 2473, 130859579289600, 203685, 963513600, 23748417, 16397141420298240000, 645119, 555804546402631680, 8527366575
OFFSET
1,1
COMMENTS
Conjecture: this sequence consists completely of integers.
From Leudesdorf's theorem this is an integer sequence. - Benoit Cloitre, Nov 13 2004
REFERENCES
G. H. Hardy and E. M. Wright, Introduction to the theory of numbers, fifth edition, Oxford Science Publication, pp. 100-102
LINKS
Eric Weisstein's World of Mathematics, Leudesdorf Theorem
Eric Weisstein's World of Mathematics, Bauers Identical Congruence
EXAMPLE
a(6) = 2*(1 + 1/5)*1*5/(6*2) = 1.
MATHEMATICA
f[n_] := Block[{k = Select[Range[n], GCD[ #, n] == 1 &]}, 2Plus @@ (Times @@ k*Plus @@ 1/k)/EulerPhi[n]/n]; Table[ f[n], {n, 26}] (* Robert G. Wilson v, Nov 16 2004 *)
CROSSREFS
Cf. A093600.
Sequence in context: A082063 A260148 A327778 * A157249 A351861 A343233
KEYWORD
nonn
AUTHOR
Leroy Quet, Nov 12 2004
EXTENSIONS
More terms from Don Reble, Nov 12 2004, who remarks that the conjecture is true for n <= 5000.
STATUS
approved