OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The sequence of terms together with their prime indices begins:
15: {2,3} 155: {3,11} 265: {3,16}
33: {2,5} 161: {4,9} 287: {4,13}
35: {3,4} 165: {2,3,5} 291: {2,25}
51: {2,7} 177: {2,17} 295: {3,17}
55: {3,5} 187: {5,7} 309: {2,27}
69: {2,9} 201: {2,19} 323: {7,8}
77: {4,5} 205: {3,13} 327: {2,29}
85: {3,7} 209: {5,8} 329: {4,15}
93: {2,11} 215: {3,14} 335: {3,19}
95: {3,8} 217: {4,11} 341: {5,11}
119: {4,7} 219: {2,21} 355: {3,20}
123: {2,13} 221: {6,7} 381: {2,31}
141: {2,15} 249: {2,23} 385: {3,4,5}
143: {5,6} 253: {5,9} 391: {7,9}
145: {3,10} 255: {2,3,7} 395: {3,22}
MATHEMATICA
Select[Range[1, 100, 2], SquareFreeQ[#]&&CoprimeQ@@PrimePi/@First/@FactorInteger[#]&]
CROSSREFS
A005117 is a superset.
A337485 counts these partitions.
A302568 considers singletons to be coprime.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's
A305713 counts pairwise coprime strict partitions.
A337561 counts pairwise coprime strict compositions.
A337697 counts pairwise coprime compositions with no 1's.
A337983 counts pairwise non-coprime strict compositions, with unordered version A318717 ranked by A318719.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 22 2020
STATUS
approved