OFFSET
1,1
COMMENTS
Squarefree terms of A050530 with 2 prime divisors.
All terms are odd. - Muniru A Asiru, Aug 29 2017
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Hacène Belbachir, Oussama Igueroufa, Combinatorial interpretation of bisnomial coefficients and Generalized Catalan numbers, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 47-54.
FORMULA
n=pq such that n-phi(n) = pq-(p-1)(q-1) = p+q-1 is prime.
MATHEMATICA
With[{nn=70}, Take[Times@@@Select[Subsets[Prime[Range[nn]], {2}], PrimeQ[Total[#] - 1] &]//Union, nn]] (* Vincenzo Librandi, Aug 23 2017 *)
PROG
(PARI) list(lim)=my(v=List()); forprime(p=5, lim\3, forprime(q=3, min(lim\p, p-2), if(isprime(p+q-1), listput(v, p*q)))); Set(v) \\ Charles R Greathouse IV, Aug 23 2017
(GAP)
A053343:=List(Filtered(Filtered(List(Filtered(List([1..10^5], Factors), i->Length(i)=2), Set), j->Length(j)=2), i->IsPrime(Sum(i)-1)), Product); # Muniru A Asiru, Aug 29 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Jan 05 2000
EXTENSIONS
New name from Vincenzo Librandi Aug 23 2017
STATUS
approved