login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053343 Semiprimes of the form pq where p < q and p + q - 1 is prime. 1
15, 33, 35, 51, 65, 77, 87, 91, 95, 119, 123, 143, 161, 177, 185, 209, 213, 215, 217, 221, 247, 259, 287, 303, 321, 329, 335, 341, 371, 377, 395, 403, 407, 411, 427, 437, 447, 469, 473, 485, 511, 515, 527, 533, 537, 545, 551, 573, 581, 591, 611, 629, 635 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Squarefree terms of A050530 with 2 prime divisors.

All terms are odd. - Muniru A Asiru, Aug 29 2017

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Hacène Belbachir, Oussama Igueroufa, Combinatorial interpretation of bisnomial coefficients and Generalized Catalan numbers, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 47-54.

FORMULA

n=pq such that n-phi(n) = pq-(p-1)(q-1) = p+q-1 is prime.

MATHEMATICA

With[{nn=70}, Take[Times@@@Select[Subsets[Prime[Range[nn]], {2}], PrimeQ[Total[#] - 1] &]//Union, nn]] (* Vincenzo Librandi, Aug 23 2017 *)

PROG

(PARI) list(lim)=my(v=List()); forprime(p=5, lim\3, forprime(q=3, min(lim\p, p-2), if(isprime(p+q-1), listput(v, p*q)))); Set(v) \\ Charles R Greathouse IV, Aug 23 2017

(GAP)

A053343:=List(Filtered(Filtered(List(Filtered(List([1..10^5], Factors), i->Length(i)=2), Set), j->Length(j)=2), i->IsPrime(Sum(i)-1)), Product); # Muniru A Asiru, Aug 29 2017

CROSSREFS

Subsequence of A291318.

Cf. A050530, A290434, A290435.

Sequence in context: A337984 A050384 A142862 * A068081 A089967 A064900

Adjacent sequences:  A053340 A053341 A053342 * A053344 A053345 A053346

KEYWORD

nonn,easy

AUTHOR

Labos Elemer, Jan 05 2000

EXTENSIONS

New name from Vincenzo Librandi Aug 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 21:30 EDT 2021. Contains 345151 sequences. (Running on oeis4.)