login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182087
Carmichael numbers of the form C = (30n-p)*(60n-(2p+1))*(90n-(3p+2)), where n is a natural number and p, 2p+1, 3p+2 are all three prime numbers.
2
1729, 172081, 294409, 1773289, 4463641, 56052361, 118901521, 172947529, 216821881, 228842209, 295643089, 798770161, 1150270849, 1299963601, 1504651681, 1976295241, 2301745249, 9624742921, 11346205609, 13079177569
OFFSET
1,1
COMMENTS
These numbers can be reduced to only two possible forms: C =(30n-23)*(60n-47)*(90n-71) or C = (30n-29)*(60n-59)*(90n-89). In the first form, for the particular case when 30n-23,60n-47 and 90n-71 are all three prime numbers, we obtain the Chernick numbers of the form 10m+1 (for k = 5n-4 we have C = (6k+1)*(12k+1)*(18k+1)). In the second form, for the particular case when 30n-29,60n-59 and 90n-89 are all three prime numbers, we obtain the Chernick numbers of the form 10m+9 (for k = 5n-5 we have C = (6k+1)*(12k+1)*(18k+1)).
So the Chernick numbers can be divided into two categories: Chernick numbers of the form (30n+7)*(60n+13)*(90n+19) and Chernick numbers of the form (30n+1)*(60n+1)*(90n+1).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Carmichael Number.
PROG
(PARI) list(lim)={
my(v=List(), f);
for(k=1, round(solve(x=(lim/162000)^(1/3), lim^(1/3), (30*x-23)*(60*x-47)*(90*x-71)-lim)),
n=(30*k-23)*(60*k-47)*(90*k-71)-1;
f=factor(30*k-23);
for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));
f=factor(60*k-47);
for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));
f=factor(90*k-71);
for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));
listput(v, n+1)
);
for(k=2, round(solve(x=(lim/162000)^(1/3), lim^(1/3), (30*x-29)*(60*x-59)*(90*x-89)-lim)),
n=(30*k-29)*(60*k-59)*(90*k-89)-1;
f=factor(30*k-29);
for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));
f=factor(60*k-59);
for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));
f=factor(90*k-89);
for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));
listput(v, n+1)
);
vecsort(Vec(v))
}; \\ Charles R Greathouse IV, Oct 02 2012
CROSSREFS
Sequence in context: A212920 A317126 A318646 * A327787 A352970 A033502
KEYWORD
nonn
AUTHOR
Marius Coman, Apr 11 2012
STATUS
approved