login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318646
The least Chernick's "universal form" Carmichael number with n prime factors.
4
1729, 63973, 26641259752490421121, 1457836374916028334162241, 24541683183872873851606952966798288052977151461406721, 53487697914261966820654105730041031613370337776541835775672321, 58571442634534443082821160508299574798027946748324125518533225605795841
OFFSET
3,1
COMMENTS
Chernick proved that U(k, m) = (6m + 1)*(12m + 1)*Product_{i = 1..k-2} (9*(2^i)m + 1), for k >= 3 and m >= 1 is a Carmichael number, if all the factors are primes and, for k >= 4, 2^(k-4) divides m. He called U(k, m) "universal forms". This sequence gives a(k) = U(k, m) with the least value of m. The least values of m for k = 3, 4, ... are 1, 1, 380, 380, 780320, 950560, 950560, 3208386195840, 31023586121600, ...
LINKS
Jack Chernick, On Fermat's simple theorem, Bulletin of the American Mathematical Society, Vol. 45, No. 4 (1939), pp. 269-274.
Daniel Suteu, C++ program
Samuel S. Wagstaff, Jr., Large Carmichael numbers, Mathematical Journal of Okayama University, Vol. 22, (1980), pp. 33-41.
EXAMPLE
For k=3, m = 1, a(3) = U(3, 1) = (6*1 + 1)*(12*1 + 1)*(18*1 + 1) = 1729.
For k=4, m = 1, a(4) = U(4, 1) = (6*1 + 1)*(12*1 + 1)*(18*1 + 1)*(36*1 + 1) = 63973.
For k=5, m = 380, a(5) = U(5, 1) = (6*380 + 1)*(12*380 + 1)*(18*380 + 1)*(36*380 + 1)*(72*380 + 1) = 26641259752490421121.
MATHEMATICA
fc[k_] := If[k < 4, 1, 2^(k - 4)]; a={}; Do[v = Join[{6, 12}, 2^Range[k-2]*9];
w = fc[k]; x = v*w; m = 1; While[! AllTrue[x*m + 1, PrimeQ], m++]; c=Times @@ (x*m + 1); AppendTo[a, c], {k, 3, 9}]; a
CROSSREFS
Cf. A002997, A033502 (3 prime factors), A206024 (4 prime factors), A206349 (5 prime factors), A126797.
Sequence in context: A272798 A212920 A317126 * A182087 A327787 A352970
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 31 2018
STATUS
approved