login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318643
G.f. D(x) satisfies: Sum_{n>=0} n * (x + (-1)^n*A(x))^n = 0, where A(x) = D^8(x), the 8th iteration of D(x), and A(x) is the g.f. of A318640.
4
1, 1, 1, 25, 73, 1025, 4913, 48985, 311305, 2393953, 17903761, 140986201, 1096160649, 7777051265, 61667165361, 597402170649, 4836234935497, 4245154618465, -25145215353455, 12982383457107609, 139920724294631369, -5479397854898810111, -68618853272591110863, 3588130738987950942681, 48514725864891831998601, -2781644195772240632990623
OFFSET
1,4
COMMENTS
a(n) (mod 8) = 1.
a(n) (mod 16) has period 4 after initial term: [1, 1,1,9,9, 1,1,9,9, ...].
LINKS
FORMULA
G.f. D(x) satisfies:
(1) D(-D(-x)) = x.
(2) 0 = Sum_{n>=0} (-1)^n * n * ( D(D(D(D(x)))) - (-1)^n*D(D(D(D(-x)) )^n.
(3) 0 = (A-x)*(1 + (A-x)^2)/(1 - (A-x)^2)^2 - 2*(A+x)^2/(1 - (A+x)^2)^2, where A = D^8(x), i.e., A(x) = D(D(D(D(D(D(D(D(x)))))))).
EXAMPLE
G.f.: D(x) = x + x^2 + x^3 + 25*x^4 + 73*x^5 + 1025*x^6 + 4913*x^7 + 48985*x^8 + 311305*x^9 + 2393953*x^10 + 17903761*x^11 + 140986201*x^12 + ...
where D(-D(-x)) = x.
RELATED SERIES.
(a) If D(D(D(D( D(D(D(D(x)))) )))) = A(x) then
A(x) = x + 8*x^2 + 64*x^3 + 704*x^4 + 8704*x^5 + 113536*x^6 + 1544192*x^7 + 21671936*x^8 + 311468032*x^9 + 4560963584*x^10 + ... + A318640(n)*x^n + ...
such that
0 = (x - A(x)) + 2*(x + A(x))^2 + 3*(x - A(x))^3 + 4*(x + A(x))^4 + 5*(x - A(x))^5 + 6*(x + A(x))^6 + 7*(x - A(x))^7 + 8*(x + A(x))^8 + 9*(x - A(x))^9 + 10*(x + A(x))^10 + ...
(b) If D(D(D(D(x)))) = B(x) then
B(x) = x + 4*x^2 + 16*x^3 + 160*x^4 + 1408*x^5 + 13760*x^6 + 140288*x^7 + 1459200*x^8 + 15595520*x^9 + 168584192*x^10 + 1847791616*x^11 + ... + A318641(n)*x^n + ...
such that
0 = (B(x) + B(-x)) - 2*(B(x) - B(-x))^2 + 3*(B(x) + B(-x))^3 - 4*(B(x) - B(-x))^4 + 5*(B(x) + B(-x))^5 - 6*(B(x) - B(-x))^6 + 7*(B(x) + B(-x))^7 - 8*(B(x) - B(-x))^8 + 9*(B(x) + B(-x))^9 - 10*(B(x) - B(-x))^10 +- ...
(c) If D(D(x)) = C(x), then
C(x) = x + 2*x^2 + 4*x^3 + 56*x^4 + 304*x^5 + 2944*x^6 + 22592*x^7 + 196864*x^8 + 1700352*x^9 + 14416896*x^10 + 127798272*x^11 + 1141090304*x^12 + ... + A318642(n)*x^n + ...
where D(-D(-x)) = x.
PROG
(PARI) {HALF(F) = my(H=x); for(i=1, #F, H = (H + subst(F, x, serreverse(H +x*O(x^#F))))/2); H}
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = polcoeff(sum(m=1, #A, m*(x + (-1)^m*x*Ser(A))^m), #A)); polcoeff( HALF(HALF(HALF(x*Ser(A)))), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 31 2018
STATUS
approved