OFFSET
0,3
COMMENTS
Binomial transform of 1/sqrt(1-48x^2).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
FORMULA
E.g.f.: exp(x)*BesselI(0, 4*sqrt(3)*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*binomial(n, k)*12^k.
D-finite with recurrence: n*a(n) +(1-2*n)*a(n-1) +47*(1-n)*a(n-2)=0. - R. J. Mathar, Sep 26 2012
a(n) ~ sqrt(72+6*sqrt(3))*(1+4*sqrt(3))^n/(12*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
MATHEMATICA
Table[SeriesCoefficient[1/Sqrt[1-2*x-47*x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)
PROG
(PARI) x='x+O('x^66); Vec(1/sqrt(1-16*x+48*x^2)) \\ Joerg Arndt, May 11 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 07 2004
STATUS
approved