The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098439 Expansion of 1/sqrt(1-2x-47x^2). 1
 1, 1, 25, 73, 1009, 4561, 47881, 272665, 2480353, 16076449, 135464185, 945516265, 7648488145, 55729490545, 441280178665, 3297808663993, 25833412158913, 196026748033345, 1527879583118809, 11703693337452937, 91042025394288049 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Binomial transform of 1/sqrt(1-48x^2). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5. Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7. FORMULA E.g.f.: exp(x)*BesselI(0, 4*sqrt(3)*x). a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*binomial(n, k)*12^k. D-finite with recurrence: n*a(n) +(1-2*n)*a(n-1) +47*(1-n)*a(n-2)=0. - R. J. Mathar, Sep 26 2012 a(n) ~ sqrt(72+6*sqrt(3))*(1+4*sqrt(3))^n/(12*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012 MATHEMATICA Table[SeriesCoefficient[1/Sqrt[1-2*x-47*x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *) PROG (PARI) x='x+O('x^66); Vec(1/sqrt(1-16*x+48*x^2)) \\ Joerg Arndt, May 11 2013 CROSSREFS Sequence in context: A124718 A126379 A114553 * A318643 A044163 A044544 Adjacent sequences:  A098436 A098437 A098438 * A098440 A098441 A098442 KEYWORD easy,nonn AUTHOR Paul Barry, Sep 07 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 03:42 EST 2021. Contains 349625 sequences. (Running on oeis4.)