login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098439
Expansion of 1/sqrt(1-2x-47x^2).
1
1, 1, 25, 73, 1009, 4561, 47881, 272665, 2480353, 16076449, 135464185, 945516265, 7648488145, 55729490545, 441280178665, 3297808663993, 25833412158913, 196026748033345, 1527879583118809, 11703693337452937, 91042025394288049
OFFSET
0,3
COMMENTS
Binomial transform of 1/sqrt(1-48x^2).
LINKS
Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
FORMULA
E.g.f.: exp(x)*BesselI(0, 4*sqrt(3)*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*binomial(n, k)*12^k.
D-finite with recurrence: n*a(n) +(1-2*n)*a(n-1) +47*(1-n)*a(n-2)=0. - R. J. Mathar, Sep 26 2012
a(n) ~ sqrt(72+6*sqrt(3))*(1+4*sqrt(3))^n/(12*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
MATHEMATICA
Table[SeriesCoefficient[1/Sqrt[1-2*x-47*x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)
PROG
(PARI) x='x+O('x^66); Vec(1/sqrt(1-16*x+48*x^2)) \\ Joerg Arndt, May 11 2013
CROSSREFS
Sequence in context: A124718 A126379 A114553 * A318643 A044163 A044544
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 07 2004
STATUS
approved