login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098441
Expansion of 1/sqrt(1 - 2*x - 63*x^2).
3
1, 1, 33, 97, 1729, 8001, 105441, 627873, 6989697, 48363649, 488206753, 3701949153, 35289342529, 283146701761, 2610495177057, 21695983405857, 196218339243777, 1667338615773441, 14917038493453089, 128562758660255073
OFFSET
0,3
COMMENTS
Binomial transform of 1/sqrt(1-64*x^2).
It appears that a(n) is the coefficient of x^n in (x^2+x+16)^n. - Joerg Arndt, Jan 13 2011
LINKS
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
FORMULA
E.g.f.: exp(x)*BesselI(0, 4*sqrt(4)*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*binomial(n, k)*16^k.
D-finite with recurrence: n*a(n) = (2*n-1)*a(n-1) + 63*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ 3^(2*n+1)/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
a(n) = 4^n*GegenbauerC(n, -n, -1/8). - Peter Luschny, May 08 2016
a(n) = hypergeometric2F1((1 - n)/2, -n/2, 1, 64). - G. C. Greubel, Feb 21 2017
MAPLE
a := n -> simplify(4^n*GegenbauerC(n, -n, -1/8)):
seq(a(n), n=0..19); # Peter Luschny, May 08 2016
MATHEMATICA
Table[SeriesCoefficient[1/Sqrt[1-2*x-63*x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)
CoefficientList[Series[1/Sqrt[1-2x-63x^2], {x, 0, 30}], x] (* Harvey P. Dale, Jan 27 2017 *)
Table[Hypergeometric2F1[(1 - k)/2, -k/2, 1, 64], {k, 0, 50}] (* G. C. Greubel, Feb 21 2017 *)
PROG
(PARI) x='x+O('x^66); Vec(1/sqrt(1-2*x-63*x^2)) \\ Joerg Arndt, May 11 2013
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1/Sqrt(1-2*x-63*x^2))); // G. C. Greubel, Oct 08 2018
CROSSREFS
Sequence in context: A044220 A044601 A195315 * A032650 A284986 A133901
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 07 2004
STATUS
approved