OFFSET
0,3
COMMENTS
Binomial transform of 1/sqrt(1-64*x^2).
It appears that a(n) is the coefficient of x^n in (x^2+x+16)^n. - Joerg Arndt, Jan 13 2011
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
FORMULA
E.g.f.: exp(x)*BesselI(0, 4*sqrt(4)*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*binomial(n, k)*16^k.
D-finite with recurrence: n*a(n) = (2*n-1)*a(n-1) + 63*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ 3^(2*n+1)/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
a(n) = 4^n*GegenbauerC(n, -n, -1/8). - Peter Luschny, May 08 2016
a(n) = hypergeometric2F1((1 - n)/2, -n/2, 1, 64). - G. C. Greubel, Feb 21 2017
MAPLE
a := n -> simplify(4^n*GegenbauerC(n, -n, -1/8)):
seq(a(n), n=0..19); # Peter Luschny, May 08 2016
MATHEMATICA
Table[SeriesCoefficient[1/Sqrt[1-2*x-63*x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)
CoefficientList[Series[1/Sqrt[1-2x-63x^2], {x, 0, 30}], x] (* Harvey P. Dale, Jan 27 2017 *)
Table[Hypergeometric2F1[(1 - k)/2, -k/2, 1, 64], {k, 0, 50}] (* G. C. Greubel, Feb 21 2017 *)
PROG
(PARI) x='x+O('x^66); Vec(1/sqrt(1-2*x-63*x^2)) \\ Joerg Arndt, May 11 2013
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1/Sqrt(1-2*x-63*x^2))); // G. C. Greubel, Oct 08 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 07 2004
STATUS
approved