login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318640
G.f. A(x) satisfies: Sum_{n>=0} n * (x + (-1)^n*A(x))^n = 0.
4
1, 8, 64, 704, 8704, 113536, 1544192, 21671936, 311468032, 4560963584, 67807363072, 1020767092736, 15528671576064, 238354043994112, 3686842679427072, 57411380912848896, 899288363016650752, 14160044430295826432, 224000813601673707520, 3558331523719659257856, 56738516167544872632320, 907803739948246687023104, 14569894558284085117059072, 234507206354840677339103232
OFFSET
1,2
LINKS
FORMULA
G.f. A = A(x) satisfies:
(1) A(-A(-x)) = x.
(2) 0 = Sum_{n>=0} n * (x + (-1)^n*A)^n.
(3) 0 = (A-x)*(1 + (A-x)^2)/(1 - (A-x)^2)^2 - 2*(A+x)^2/(1 - (A+x)^2)^2.
(4) 0 = x*(1-x)^2*(1+x)^4 - (1-x)^5*(1+x)*A + (2+x+4*x^2-3*x^3)*(1+x)^2*A^2 + (1-x)^3*(1+3*x)*A^3 - (4+5*x+2*x^2-3*x^3)*A^4 + (1-x)*(1-3*x)*A^5 + (2-x)*A^6 - A^7.
(5) A(x) = D(D(D(D( D(D(D(D(x)))) )))), the 8th iteration of the g.f. D(x) of A318643.
a(n) ~ c * d^n / n^(3/2), where d = 17.1575459832392661371657069324318450352851378685670176577789845392153106... and c = 0.0649898418070562963132195090430418977694503433390371091160871400852... - Vaclav Kotesovec, Sep 06 2018
EXAMPLE
G.f.: A(x) = x + 8*x^2 + 64*x^3 + 704*x^4 + 8704*x^5 + 113536*x^6 + 1544192*x^7 + 21671936*x^8 + 311468032*x^9 + 4560963584*x^10 + ...
such that
0 = (x - A(x)) + 2*(x + A(x))^2 + 3*(x - A(x))^3 + 4*(x + A(x))^4 + 5*(x - A(x))^5 + 6*(x + A(x))^6 + 7*(x - A(x))^7 + 8*(x + A(x))^8 + 9*(x - A(x))^9 + 10*(x + A(x))^10 + ...
RELATED SERIES.
(a) If B(B(x)) = A(x) then
B(x) = x + 4*x^2 + 16*x^3 + 160*x^4 + 1408*x^5 + 13760*x^6 + 140288*x^7 + 1459200*x^8 + 15595520*x^9 + 168584192*x^10 + 1847791616*x^11 + ... + A318641(n)*x^n + ...
where B(-B(-x)) = x.
(b) If C(C(C(C(x)))) = A(x), so that C(C(x)) = B(x), then
C(x) = x + 2*x^2 + 4*x^3 + 56*x^4 + 304*x^5 + 2944*x^6 + 22592*x^7 + 196864*x^8 + 1700352*x^9 + 14416896*x^10 + 127798272*x^11 + 1141090304*x^12 + ... + A318642(n)*x^n + ...
where C(-C(-x)) = x.
(c) If D(D(D(D( D(D(D(D(x)))) )))) = A(x), so that D(D(x)) = C(x), then
D(x) = x + x^2 + x^3 + 25*x^4 + 73*x^5 + 1025*x^6 + 4913*x^7 + 48985*x^8 + 311305*x^9 + 2393953*x^10 + 17903761*x^11 + 140986201*x^12 + 1096160649*x^13 + ... + A318643(n)*x^n + ...
where D(-D(-x)) = x.
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = polcoeff(sum(m=1, #A, m*(x + (-1)^m*x*Ser(A))^m), #A)); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 31 2018
STATUS
approved