login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318639
a(n) = Sum_{k>=0} n^k * log(k)^k / k!, rounded to nearest integer.
1
1, 2, 22, 646, 28847, 1741588, 133980041, 12608022914, 1409256807168, 183015824998133, 27146136664293731, 4536471294450895300, 844659618442741504695, 173611839268827045840473, 39085824299332714462271372, 9574184453657569104285899833, 2536995721294132939799176959316, 723576083578946843489853252981403, 221140244488698891750492920932788745
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k>=0} log(k^n)^k / k!, rounded to the nearest integer.
log(a(n)) ~ n^(n - 1/2) * log(n)^n * log(n*log(n*log(n)))^(n*log(n*log(n))) / (sqrt(2*Pi) * log(n*log(n))^(1/2 + n*log(n*log(n)))). - Vaclav Kotesovec, Sep 15 2018
EXAMPLE
The initial values of Sum_{k>=0} n^k * log(k)^k / k! begin:
n=0: 1
n=1: 1.785672099547734935860778589192856069327146674275145448...
n=2: 21.59893039935750356144319397458439503558078182702969038...
n=3: 645.8053741791930703577716806845658568790747976442247100...
n=4: 28847.12309840959482600168935775370329169251260992931745...
n=5: 1741587.903076664489270185782706726704206814310319809374...
n=6: 133980040.7674241503067515015896322884481377841596013399...
n=7: 12608022913.50110331415710392216643380159838762797570877...
n=8: 1409256807168.466379904069284286327483370824123237852285...
n=9: 183015824998133.3607705761259552467771528177897530667232...
n=10: 27146136664293731.1548378977029279237444516674554473767...
n=11: 4536471294450895299.98197621326037200309665282140191583...
n=12: 844659618442741504695.145062999869803538259503828818159...
n=13: 173611839268827045840473.323145586704343200892028060221...
n=14: 39085824299332714462271371.5306771659839726127936982072...
n=15: 9574184453657569104285899833.41979300490536053788507172...
n=16: 2536995721294132939799176959315.74691780446875099956447...
n=17: 723576083578946843489853252981403.043176513226329165540...
n=18: 221140244488698891750492920932788745.357323784096639994...
n=19: 72137405174355471782873335091418865841.8570612366704366...
n=20: 25028520511541449109504471282367224756153.9326945669108...
etc.
The logarithms of these sums begin:
n=1: 0.57979487072061663249684154367...
n=2: 3.07264379491577180724564218166...
n=3: 6.47049818002877678471502971293...
n=4: 10.2697655476713847022668879010...
n=5: 14.3703078430105664212110327292...
n=6: 18.7132013973242728184421978983...
n=7: 23.2575991874382258771020044708...
n=8: 27.9740835942448178680184355287...
n=9: 32.8405937404308231686932457755...
n=10: 37.840011135191148812742939590...
n=11: 42.958681135814003844455350022...
n=12: 48.185465401685909208633101944...
n=13: 53.511108951328944745457583734...
n=14: 58.927802083222127407206926376...
n=15: 64.428867867725650656453035594...
n=16: 70.008533383915269331668542704...
n=17: 75.661758490804776290557928228...
n=18: 81.384105159500487983924222643...
n=19: 87.171636053309378500732579385...
n=20: 93.020834621856469490292683085...
etc.
CROSSREFS
Sequence in context: A210657 A177042 A308535 * A354243 A220732 A333796
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 13 2018
STATUS
approved