login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318641
G.f. B(x) satisfies: Sum_{n>=0} (-1)^n * n * (B(x) - (-1)^n*B(-x))^n = 0.
4
1, 4, 16, 160, 1408, 13760, 140288, 1459200, 15595520, 168584192, 1847791616, 20524785664, 230327189504, 2605161103360, 29668221648896, 340391560216576, 3932276970749952, 45577849469665280, 529120083810713600, 6194461391984787456, 73492658811551350784, 862792881224493826048, 9756093957689676136448, 117188194561127830519808, 1695314645779792548331520
OFFSET
1,2
COMMENTS
First negative term is a(31).
LINKS
FORMULA
G.f. B(x) satisfies:
(1) B(-B(-x)) = x.
(2) 0 = Sum_{n>=0} (-1)^n * n * (B(x) - (-1)^n*B(-x))^n.
(3) 0 = Sum_{n>=0} n * (x + (-1)^n*B(B(x)))^n.
(4) 0 = (A-x)*(1 + (A-x)^2)/(1 - (A-x)^2)^2 - 2*(A+x)^2/(1 - (A+x)^2)^2, where A = B(B(x)).
(5) B(x) = D(D(D(D(x)))), the 4th iteration of the g.f. D(x) of A318643.
EXAMPLE
G.f.: B(x) = x + 4*x^2 + 16*x^3 + 160*x^4 + 1408*x^5 + 13760*x^6 + 140288*x^7 + 1459200*x^8 + 15595520*x^9 + 168584192*x^10 + 1847791616*x^11 + ...
such that
0 = (B(x) + B(-x)) - 2*(B(x) - B(-x))^2 + 3*(B(x) + B(-x))^3 - 4*(B(x) - B(-x))^4 + 5*(B(x) + B(-x))^5 - 6*(B(x) - B(-x))^6 + 7*(B(x) + B(-x))^7 - 8*(B(x) - B(-x))^8 + 9*(B(x) + B(-x))^9 - 10*(B(x) - B(-x))^10 +- ...
RELATED SERIES.
(a) If B(B(x)) = A(x) then
A(x) = x + 8*x^2 + 64*x^3 + 704*x^4 + 8704*x^5 + 113536*x^6 + 1544192*x^7 + 21671936*x^8 + 311468032*x^9 + 4560963584*x^10 + ... + A318640(n)*x^n + ...
such that
0 = (x - A(x)) + 2*(x + A(x))^2 + 3*(x - A(x))^3 + 4*(x + A(x))^4 + 5*(x - A(x))^5 + 6*(x + A(x))^6 + 7*(x - A(x))^7 + 8*(x + A(x))^8 + 9*(x - A(x))^9 + 10*(x + A(x))^10 + ...
(b) If C(C(x)) = B(x), then
C(x) = x + 2*x^2 + 4*x^3 + 56*x^4 + 304*x^5 + 2944*x^6 + 22592*x^7 + 196864*x^8 + 1700352*x^9 + 14416896*x^10 + 127798272*x^11 + 1141090304*x^12 + ... + A318642(n)*x^n + ...
where C(-C(-x)) = x.
(c) If D(D(D(D(x)))) = B(x), so that D(D(x)) = C(x), then
D(x) = x + x^2 + x^3 + 25*x^4 + 73*x^5 + 1025*x^6 + 4913*x^7 + 48985*x^8 + 311305*x^9 + 2393953*x^10 + 17903761*x^11 + 140986201*x^12 + 1096160649*x^13 + ... + A318643(n)*x^n + ...
where D(-D(-x)) = x.
PROG
(PARI) {HALF(F) = my(H=x); for(i=1, #F, H = (H + subst(F, x, serreverse(H +x*O(x^#F))))/2); H}
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = polcoeff(sum(m=1, #A, m*(x + (-1)^m*x*Ser(A))^m), #A)); polcoeff( HALF(x*Ser(A)), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 31 2018
STATUS
approved