login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: Sum_{n>=0} n * (x + (-1)^n*A(x))^n = 0.
4

%I #12 Nov 09 2018 18:24:58

%S 1,8,64,704,8704,113536,1544192,21671936,311468032,4560963584,

%T 67807363072,1020767092736,15528671576064,238354043994112,

%U 3686842679427072,57411380912848896,899288363016650752,14160044430295826432,224000813601673707520,3558331523719659257856,56738516167544872632320,907803739948246687023104,14569894558284085117059072,234507206354840677339103232

%N G.f. A(x) satisfies: Sum_{n>=0} n * (x + (-1)^n*A(x))^n = 0.

%H Paul D. Hanna, <a href="/A318640/b318640.txt">Table of n, a(n) for n = 1..500</a>

%F G.f. A = A(x) satisfies:

%F (1) A(-A(-x)) = x.

%F (2) 0 = Sum_{n>=0} n * (x + (-1)^n*A)^n.

%F (3) 0 = (A-x)*(1 + (A-x)^2)/(1 - (A-x)^2)^2 - 2*(A+x)^2/(1 - (A+x)^2)^2.

%F (4) 0 = x*(1-x)^2*(1+x)^4 - (1-x)^5*(1+x)*A + (2+x+4*x^2-3*x^3)*(1+x)^2*A^2 + (1-x)^3*(1+3*x)*A^3 - (4+5*x+2*x^2-3*x^3)*A^4 + (1-x)*(1-3*x)*A^5 + (2-x)*A^6 - A^7.

%F (5) A(x) = D(D(D(D( D(D(D(D(x)))) )))), the 8th iteration of the g.f. D(x) of A318643.

%F a(n) ~ c * d^n / n^(3/2), where d = 17.1575459832392661371657069324318450352851378685670176577789845392153106... and c = 0.0649898418070562963132195090430418977694503433390371091160871400852... - _Vaclav Kotesovec_, Sep 06 2018

%e G.f.: A(x) = x + 8*x^2 + 64*x^3 + 704*x^4 + 8704*x^5 + 113536*x^6 + 1544192*x^7 + 21671936*x^8 + 311468032*x^9 + 4560963584*x^10 + ...

%e such that

%e 0 = (x - A(x)) + 2*(x + A(x))^2 + 3*(x - A(x))^3 + 4*(x + A(x))^4 + 5*(x - A(x))^5 + 6*(x + A(x))^6 + 7*(x - A(x))^7 + 8*(x + A(x))^8 + 9*(x - A(x))^9 + 10*(x + A(x))^10 + ...

%e RELATED SERIES.

%e (a) If B(B(x)) = A(x) then

%e B(x) = x + 4*x^2 + 16*x^3 + 160*x^4 + 1408*x^5 + 13760*x^6 + 140288*x^7 + 1459200*x^8 + 15595520*x^9 + 168584192*x^10 + 1847791616*x^11 + ... + A318641(n)*x^n + ...

%e where B(-B(-x)) = x.

%e (b) If C(C(C(C(x)))) = A(x), so that C(C(x)) = B(x), then

%e C(x) = x + 2*x^2 + 4*x^3 + 56*x^4 + 304*x^5 + 2944*x^6 + 22592*x^7 + 196864*x^8 + 1700352*x^9 + 14416896*x^10 + 127798272*x^11 + 1141090304*x^12 + ... + A318642(n)*x^n + ...

%e where C(-C(-x)) = x.

%e (c) If D(D(D(D( D(D(D(D(x)))) )))) = A(x), so that D(D(x)) = C(x), then

%e D(x) = x + x^2 + x^3 + 25*x^4 + 73*x^5 + 1025*x^6 + 4913*x^7 + 48985*x^8 + 311305*x^9 + 2393953*x^10 + 17903761*x^11 + 140986201*x^12 + 1096160649*x^13 + ... + A318643(n)*x^n + ...

%e where D(-D(-x)) = x.

%o (PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = polcoeff(sum(m=1, #A, m*(x + (-1)^m*x*Ser(A))^m), #A)); A[n]}

%o for(n=1, 30, print1(a(n), ", "))

%Y Cf. A318641, A318642, A318643.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Aug 31 2018