Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Nov 09 2018 18:23:33
%S 1,1,1,25,73,1025,4913,48985,311305,2393953,17903761,140986201,
%T 1096160649,7777051265,61667165361,597402170649,4836234935497,
%U 4245154618465,-25145215353455,12982383457107609,139920724294631369,-5479397854898810111,-68618853272591110863,3588130738987950942681,48514725864891831998601,-2781644195772240632990623
%N G.f. D(x) satisfies: Sum_{n>=0} n * (x + (-1)^n*A(x))^n = 0, where A(x) = D^8(x), the 8th iteration of D(x), and A(x) is the g.f. of A318640.
%C a(n) (mod 8) = 1.
%C a(n) (mod 16) has period 4 after initial term: [1, 1,1,9,9, 1,1,9,9, ...].
%H Paul D. Hanna, <a href="/A318643/b318643.txt">Table of n, a(n) for n = 1..400</a>
%F G.f. D(x) satisfies:
%F (1) D(-D(-x)) = x.
%F (2) 0 = Sum_{n>=0} (-1)^n * n * ( D(D(D(D(x)))) - (-1)^n*D(D(D(D(-x)) )^n.
%F (3) 0 = (A-x)*(1 + (A-x)^2)/(1 - (A-x)^2)^2 - 2*(A+x)^2/(1 - (A+x)^2)^2, where A = D^8(x), i.e., A(x) = D(D(D(D(D(D(D(D(x)))))))).
%e G.f.: D(x) = x + x^2 + x^3 + 25*x^4 + 73*x^5 + 1025*x^6 + 4913*x^7 + 48985*x^8 + 311305*x^9 + 2393953*x^10 + 17903761*x^11 + 140986201*x^12 + ...
%e where D(-D(-x)) = x.
%e RELATED SERIES.
%e (a) If D(D(D(D( D(D(D(D(x)))) )))) = A(x) then
%e A(x) = x + 8*x^2 + 64*x^3 + 704*x^4 + 8704*x^5 + 113536*x^6 + 1544192*x^7 + 21671936*x^8 + 311468032*x^9 + 4560963584*x^10 + ... + A318640(n)*x^n + ...
%e such that
%e 0 = (x - A(x)) + 2*(x + A(x))^2 + 3*(x - A(x))^3 + 4*(x + A(x))^4 + 5*(x - A(x))^5 + 6*(x + A(x))^6 + 7*(x - A(x))^7 + 8*(x + A(x))^8 + 9*(x - A(x))^9 + 10*(x + A(x))^10 + ...
%e (b) If D(D(D(D(x)))) = B(x) then
%e B(x) = x + 4*x^2 + 16*x^3 + 160*x^4 + 1408*x^5 + 13760*x^6 + 140288*x^7 + 1459200*x^8 + 15595520*x^9 + 168584192*x^10 + 1847791616*x^11 + ... + A318641(n)*x^n + ...
%e such that
%e 0 = (B(x) + B(-x)) - 2*(B(x) - B(-x))^2 + 3*(B(x) + B(-x))^3 - 4*(B(x) - B(-x))^4 + 5*(B(x) + B(-x))^5 - 6*(B(x) - B(-x))^6 + 7*(B(x) + B(-x))^7 - 8*(B(x) - B(-x))^8 + 9*(B(x) + B(-x))^9 - 10*(B(x) - B(-x))^10 +- ...
%e (c) If D(D(x)) = C(x), then
%e C(x) = x + 2*x^2 + 4*x^3 + 56*x^4 + 304*x^5 + 2944*x^6 + 22592*x^7 + 196864*x^8 + 1700352*x^9 + 14416896*x^10 + 127798272*x^11 + 1141090304*x^12 + ... + A318642(n)*x^n + ...
%e where D(-D(-x)) = x.
%o (PARI) {HALF(F) = my(H=x); for(i=1,#F, H = (H + subst(F,x,serreverse(H +x*O(x^#F))))/2);H}
%o {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = polcoeff(sum(m=1, #A, m*(x + (-1)^m*x*Ser(A))^m), #A)); polcoeff( HALF(HALF(HALF(x*Ser(A)))),n)}
%o for(n=1, 30, print1(a(n), ", "))
%Y Cf. A318640, A318641, A318642.
%K sign
%O 1,4
%A _Paul D. Hanna_, Aug 31 2018