login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272798
Carmichael numbers k such that Euler totient function of k (phi(k)) is a perfect square.
4
1729, 63973, 75361, 172081, 278545, 340561, 658801, 997633, 1773289, 3224065, 5310721, 8719309, 8719921, 12945745, 13187665, 15888313, 17586361, 27402481, 29020321, 39353665, 40430401, 49333201, 67371265, 84417985, 120981601, 128697361, 129255841, 130032865, 151530401, 151813201, 158864833
OFFSET
1,1
COMMENTS
Subsequence of A262406.
If n is a Carmichael number, then phi(n) = Product_{primes p dividing n} (p-1).
So the question is: What are the Carmichael numbers n such that Product_{primes p dividing n} (p-1) is a square?
The number of prime divisors of terms of this sequence are 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 4, ...
1299963601 = 601*1201*1801 is the second term that has three prime divisors and it is a member of this sequence since 600*1200*1800 = 2^10*3^4*5^6 is a square.
This sequence is infinite. See links section for more details. - Altug Alkan, Jan 16 2017
EXAMPLE
1729 is a term because A000010(1729) = 1729*(1-1/7)*(1-1/13)*(1-1/19) = 1296 = 36^2.
PROG
(PARI) isA002997(n) = {my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1}
lista(nn) = for(n=1, nn, if(isA002997(n) && issquare(eulerphi(n)), print1(n, ", ")));
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, May 06 2016
EXTENSIONS
a(30) corrected by Amiram Eldar, Aug 11 2017
STATUS
approved