login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265628
Carmichael numbers (A002997) of the form k^3 + 1.
4
1729, 46657, 2628073, 19683001, 110592000001, 432081216001, 2116874304001, 3176523000001, 312328165704192001, 12062716067698821000001, 211215936967181638848001, 411354705193473163968001, 14295706553536348081491001, 32490089562753934948660824001
OFFSET
1,1
COMMENTS
For the first nine Carmichael numbers of the form k^3 + 1, the values of k + 1 are 13, 37, 139, 271, 4801, 7561, 12841, 14701, 678481 and only 14701 is not a prime number.
The sequence also includes: 32490089562753934948660824001, 782293837499544845175052968001, 611009032634107957276386802479001. - Daniel Suteu, Dec 25 2020
LINKS
G. Tarry, I. Franel, A. Korselt, and G. Vacca, Problème chinois, L'intermédiaire des mathématiciens 6 (1899), pp. 142-144.
Eric Weisstein's World of Mathematics, Carmichael Number.
EXAMPLE
2628073 is a term because it is a Carmichael number and 2628073 = 138^3 + 1.
PROG
(PARI) is_c(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1 }
for(n=1, 1e10, if(is_c(k=n^3+1), print1(k, ", ")))
(PARI) lista(kmax) = {my(m); for(k = 2, kmax, f = factor(k); for(i = 1, #f~, f[i, 2] *= 3); m = k^3 + 1; fordiv(f, d, if(!(m % (d+1)) && isprime(d+1), m /= (d+1))); if(m == 1, print1(k^3 + 1, ", "))); } \\ Amiram Eldar, May 02 2024
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Altug Alkan, Dec 10 2015
EXTENSIONS
More terms from Alois P. Heinz, Dec 10 2015
a(10)-a(13) from Daniel Suteu, Dec 25 2020
a(14) from Daniel Suteu confirmed by Amiram Eldar, May 02 2024
STATUS
approved