login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265285
Carmichael numbers (A002997) k such that k-1 is a square.
3
46657, 2433601, 67371265, 351596817937, 422240040001, 18677955240001, 458631349862401, 286245437364810001, 20717489165917230086401
OFFSET
1,1
COMMENTS
This sequence contains all Carmichael numbers n such that for all primes p dividing n, p-1 divides n-1 and furthermore, n-1 is a square.
Numbers sqrt(a(n)-1) form a subsequence of A135590. - Max Alekseyev, Apr 25 2024
LINKS
G. Tarry, I. Franel, A. Korselt, and G. Vacca, Problème chinois, L'intermédiaire des mathématiciens 6 (1899), pp. 142-144.
Eric Weisstein's World of Mathematics, Carmichael Number.
EXAMPLE
46657 is a term because 46657 - 1 = 46656 = 216^2.
2433601 is a term because 2433601 - 1 = 2433600 = 1560^2.
MAPLE
isA002997:= proc(n) local F, p;
if n::even or isprime(n) then return false fi;
F:= ifactors(n)[2];
if max(seq(f[2], f=F)) > 1 then return false fi;
andmap(f -> (n-1) mod (f[1]-1) = 0, F)
end proc:
select(isA002997, [seq(4*i^2+1, i=1..10^6)]); # Robert Israel, Dec 08 2015
PROG
(PARI) is_c(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1 }
for(n=1, 1e10, if(is_c(n) && issquare(n-1), print1(n, ", ")))
(PARI) lista(kmax) = {my(m); for(k = 2, kmax, m = k^2 + 1; if(!isprime(m), f = factor(k); for(i = 1, #f~, f[i, 2] *= 2); fordiv(f, d, if(!(m % (d+1)) && isprime(d+1), m /= (d+1))); if(m == 1, print1(k^2 + 1, ", ")))); } \\ Amiram Eldar, May 02 2024
CROSSREFS
Subsequence of A265237 and of A265328.
Sequence in context: A143163 A132642 A355307 * A255514 A251502 A052359
KEYWORD
nonn,hard,more
AUTHOR
Altug Alkan, Dec 06 2015
EXTENSIONS
a(4)-a(5), using A002997 b-file, from Michel Marcus, Dec 07 2015
a(6) and a(7) from Robert Israel, Dec 08 2015
a(8) from Max Alekseyev, Apr 30 2018
a(9) from Daniel Suteu confirmed by Max Alekseyev, Apr 25 2024
STATUS
approved