The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265237 Carmichael numbers (A002997) that are the sum of two squares. 4
 1105, 2465, 10585, 29341, 46657, 115921, 162401, 252601, 278545, 294409, 314821, 410041, 488881, 530881, 552721, 1461241, 1909001, 2433601, 3224065, 3581761, 4335241, 5148001, 5310721, 5444489, 5632705, 6054985, 6189121, 7207201, 7519441, 8134561, 8355841 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Carmichael numbers that are the sum of two distinct nonzero squares. 29341 is the first term for which neither of the squares can be the square of a prime. Carmichael numbers that are not the sum of two squares start 561, 1729, 2821, 6601, 8911, 15841, ... A Carmichael number m is a sum of two squares if and only if p == 1 (mod m) for every prime p|m. Observation, numerically checked by Amiram Eldar: the first 13 terms of this sequence are odd composites m such that m | EulerNumber(m-1) (A122045). - Thomas Ordowski, Mar 01 2020 LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 G. Tarry, I. Franel, A. Korselt, and G. Vacca. Problème chinois. L'intermédiaire des mathématiciens 6 (1899), pp. 142-144. Eric Weisstein's World of Mathematics, Carmichael Number EXAMPLE 1105 is a term because 1105 = 23^2 + 24^2. 2465 is a term because 2465 = 41^2 + 28^2. 10585 is a term because 10585 = 37^2 + 96^2. MATHEMATICA t = Cases[Range[1, 10^7, 2], n_ /; Mod[n, CarmichaelLambda@ n] == 1 && ! PrimeQ@ n]; Select[t, SquaresR[2, #] > 0 &] (* Michael De Vlieger, Dec 06 2015, after Artur Jasinski at A002997 *) PROG (PARI) is(n)=if(n<5, return(0)); my(f=factor(n)%4); if(vecmin(f[, 1])>1, return(0)); for(i=1, #f[, 1], if(f[i, 1]==3 && f[i, 2]%2, return(0))); 1 is_c(n)={my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1} for(n=1, 1e7, if(is(n)&&is_c(n), print1(n, ", "))) CROSSREFS Cf. A002997, A004431, A122045. Sequence in context: A102924 A214017 A083738 * A291602 A275881 A291616 Adjacent sequences:  A265234 A265235 A265236 * A265238 A265239 A265240 KEYWORD nonn AUTHOR Altug Alkan, Dec 06 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 6 12:26 EDT 2022. Contains 355110 sequences. (Running on oeis4.)