Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #44 Mar 27 2020 19:53:51
%S 1105,2465,10585,29341,46657,115921,162401,252601,278545,294409,
%T 314821,410041,488881,530881,552721,1461241,1909001,2433601,3224065,
%U 3581761,4335241,5148001,5310721,5444489,5632705,6054985,6189121,7207201,7519441,8134561,8355841
%N Carmichael numbers (A002997) that are the sum of two squares.
%C Carmichael numbers that are the sum of two distinct nonzero squares.
%C 29341 is the first term for which neither of the squares can be the square of a prime.
%C Carmichael numbers that are not the sum of two squares start 561, 1729, 2821, 6601, 8911, 15841, ...
%C A Carmichael number m is a sum of two squares if and only if p == 1 (mod m) for every prime p|m. Observation, numerically checked by _Amiram Eldar_: the first 13 terms of this sequence are odd composites m such that m | EulerNumber(m-1) (A122045). - _Thomas Ordowski_, Mar 01 2020
%H Amiram Eldar, <a href="/A265237/b265237.txt">Table of n, a(n) for n = 1..10000</a>
%H G. Tarry, I. Franel, A. Korselt, and G. Vacca. <a href="https://oeis.org/wiki/File:Probl%C3%A8me_chinois.pdf">Problème chinois</a>. L'intermédiaire des mathématiciens 6 (1899), pp. 142-144.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CarmichaelNumber.html">Carmichael Number</a>
%H <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a>
%e 1105 is a term because 1105 = 23^2 + 24^2.
%e 2465 is a term because 2465 = 41^2 + 28^2.
%e 10585 is a term because 10585 = 37^2 + 96^2.
%t t = Cases[Range[1, 10^7, 2], n_ /; Mod[n, CarmichaelLambda@ n] == 1 && ! PrimeQ@ n]; Select[t, SquaresR[2, #] > 0 &] (* _Michael De Vlieger_, Dec 06 2015, after _Artur Jasinski_ at A002997 *)
%o (PARI) is(n)=if(n<5, return(0)); my(f=factor(n)%4); if(vecmin(f[, 1])>1, return(0)); for(i=1, #f[, 1], if(f[i, 1]==3 && f[i, 2]%2, return(0))); 1
%o is_c(n)={my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1}
%o for(n=1, 1e7, if(is(n)&&is_c(n), print1(n, ", ")))
%Y Cf. A002997, A004431, A122045.
%K nonn
%O 1,1
%A _Altug Alkan_, Dec 06 2015