Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #53 May 02 2024 04:35:45
%S 46657,2433601,67371265,351596817937,422240040001,18677955240001,
%T 458631349862401,286245437364810001,20717489165917230086401
%N Carmichael numbers (A002997) k such that k-1 is a square.
%C This sequence contains all Carmichael numbers n such that for all primes p dividing n, p-1 divides n-1 and furthermore, n-1 is a square.
%C Numbers sqrt(a(n)-1) form a subsequence of A135590. - _Max Alekseyev_, Apr 25 2024
%H G. Tarry, I. Franel, A. Korselt, and G. Vacca, <a href="https://oeis.org/wiki/File:Probl%C3%A8me_chinois.pdf">Problème chinois</a>, L'intermédiaire des mathématiciens 6 (1899), pp. 142-144.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CarmichaelNumber.html">Carmichael Number</a>.
%H <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a>.
%e 46657 is a term because 46657 - 1 = 46656 = 216^2.
%e 2433601 is a term because 2433601 - 1 = 2433600 = 1560^2.
%p isA002997:= proc(n) local F,p;
%p if n::even or isprime(n) then return false fi;
%p F:= ifactors(n)[2];
%p if max(seq(f[2],f=F)) > 1 then return false fi;
%p andmap(f -> (n-1) mod (f[1]-1) = 0, F)
%p end proc:
%p select(isA002997, [seq(4*i^2+1,i=1..10^6)]); # _Robert Israel_, Dec 08 2015
%o (PARI) is_c(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1 }
%o for(n=1, 1e10, if(is_c(n) && issquare(n-1), print1(n, ", ")))
%o (PARI) lista(kmax) = {my(m); for(k = 2, kmax, m = k^2 + 1; if(!isprime(m), f = factor(k); for(i = 1, #f~, f[i, 2] *= 2); fordiv(f, d, if(!(m % (d+1)) && isprime(d+1), m /= (d+1))); if(m == 1, print1(k^2 + 1, ", ")))); } \\ _Amiram Eldar_, May 02 2024
%Y Subsequence of A265237 and of A265328.
%Y Cf. A002997, A135590, A265237, A303791.
%K nonn,hard,more
%O 1,1
%A _Altug Alkan_, Dec 06 2015
%E a(4)-a(5), using A002997 b-file, from _Michel Marcus_, Dec 07 2015
%E a(6) and a(7) from _Robert Israel_, Dec 08 2015
%E a(8) from _Max Alekseyev_, Apr 30 2018
%E a(9) from _Daniel Suteu_ confirmed by _Max Alekseyev_, Apr 25 2024