login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262406
Squarefree k such that phi(k) is a perfect square.
3
1, 2, 5, 10, 17, 34, 37, 57, 74, 85, 101, 114, 170, 185, 197, 202, 219, 257, 273, 285, 370, 394, 401, 438, 451, 489, 505, 514, 546, 570, 577, 629, 677, 679, 802, 902, 969, 978, 985, 1010, 1057, 1095, 1154, 1258, 1285, 1297, 1354, 1358, 1365
OFFSET
1,2
COMMENTS
The subsequence of primes is A002496 (primes of the form k^2+1). - Michel Marcus, Oct 14 2015
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
W. D. Banks, J. B. Friedlander, C. Pomerance and I. E. Shparlinski, Multiplicative structure of values of the Euler function, in High Primes and Misdemeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams (A. Van der Poorten, ed.), Fields Inst. Comm. 41 (2004), pp. 29-47.
FORMULA
Banks, Friedlander, Pomerance, and Shparlinski show that a(n) = O(n^1.421).
MATHEMATICA
Select[Range[1500], SquareFreeQ[#] && IntegerQ @ Sqrt @ EulerPhi[#] &] (* Amiram Eldar, Jul 16 2022 *)
PROG
(PARI) is(n)=my(f=factor(n)); issquare(eulerphi(f)) && (n==1 || vecmax(f[, 2])==1)
(Magma) [n: n in [1..1400] | IsSquarefree(n) and IsSquare(EulerPhi(n))]; // Vincenzo Librandi, May 05 2016
CROSSREFS
Intersection of A039770 and A005117.
Sequence in context: A227363 A372683 A342172 * A308600 A308604 A018315
KEYWORD
nonn
AUTHOR
STATUS
approved