OFFSET
0,2
FORMULA
a(n) = A067535(2^n). - R. J. Mathar, May 31 2024
EXAMPLE
The terms together with their binary expansions and binary indices begin:
1: 1 ~ {1}
2: 10 ~ {2}
5: 101 ~ {1,3}
10: 1010 ~ {2,4}
17: 10001 ~ {1,5}
33: 100001 ~ {1,6}
65: 1000001 ~ {1,7}
129: 10000001 ~ {1,8}
257: 100000001 ~ {1,9}
514: 1000000010 ~ {2,10}
1027: 10000000011 ~ {1,2,11}
2049: 100000000001 ~ {1,12}
4097: 1000000000001 ~ {1,13}
8193: 10000000000001 ~ {1,14}
16385: 100000000000001 ~ {1,15}
32770: 1000000000000010 ~ {2,16}
65537: 10000000000000001 ~ {1,17}
131073: 100000000000000001 ~ {1,18}
262145: 1000000000000000001 ~ {1,19}
524289: 10000000000000000001 ~ {1,20}
MATHEMATICA
Table[NestWhile[#+1&, 2^n, !SquareFreeQ[#]&], {n, 0, 10}]
PROG
(PARI) a(n) = my(k=2^n); while (!issquarefree(k), k++); k; \\ Michel Marcus, May 29 2024
(Python)
from itertools import count
from sympy import factorint
def A372683(n): return next(i for i in count(1<<n) if max(factorint(i).values(), default=1)==1) # Chai Wah Wu, Aug 26 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 26 2024
STATUS
approved